Solutions homework \# 3: Complex Analysis 1

1. (a) If a_{n} is bounded, then this follows from Bolzano-Weierstraß. If a_{n} is unbounded, then we can extract a subsequence that converges to ∞ or $-\infty$.
(b) I'll do this under the additional assumption that $A \in \mathbb{R}$. Essentially the same arguments also work if $A= \pm \infty$.
Given any $k \geq 1$, we can find an accumulation point $a>A-1 / k$. It follows that there is an $a_{n_{k}} \in(a-1 / k, a+1 / k) \subseteq(A-2 / k, A+2 / k)$. So $a_{n_{k}} \rightarrow A$, and this says that A is an accumulation point, as claimed.
(c) Let me first show that A, as defined in part (a), has these properties. Property (i) is clear from the fact that A is an accumulation point. If we had an infinite subsequence $a_{n_{k}}>B>A$, then a suitable subsubsequence would converge to an (extended) limit $a \geq B>A$, but this is impossible because A is the largest accumulation point. So (ii) holds. Conversely, if A satisfies (i), (ii), then A is an accumulation point: for any $\epsilon>0$, the interval $(A-\epsilon, A+\epsilon)$ contains infinitely many a_{n}, as we see by combining (i), (ii). By (ii), A is the largest accumulation point.
(d) Denote the expression on the RHS by C. For any k, we have that $\sup _{n \geq k} a_{n} \geq A$, because A is an accumulation point. So $C \geq A$. On the other hand, for any $\epsilon>0$, we will (eventually) have that $\sup _{n \geq k} a_{n} \leq$ $A+\epsilon$, for all sufficiently large k. This follows from (c)(ii). We now see that $C \leq A$.
(e) The sequence $\left(\sup _{n \geq k} a_{n}\right)_{k \geq 1}$ is decreasing, so the inf equals the lim.
(f) If $a_{n} \rightarrow a$, then a is the only accumulation point of this sequence, so $\liminf a_{n}=\limsup a_{n}(=a)$. Conversely, if this holds, then a_{n} has to converge to this common value: if not, then we would find an infinite subsequence with $\left|a_{n_{k}}-a\right| \geq \epsilon>0$, but this would lead to another accumulation point, and the smallest accumulation would not be the same as the largest.
2. Proof. Suppose that we had $P=\left\{z_{n}: n \geq 1\right\}$. Since z_{1} is not isolated, we can find other points in P. Select such a point and call it a_{1}. Also, let $r_{1}=\left|z_{1}-a_{1}\right| / 2>0$.
Next, since $a_{1} \in P$ is not isolated, the disk $D_{1}=D\left(a_{1}, r_{1}\right)$ must contain other points of P. Pick one and call it a_{2}, and also take $r_{2}>0$ so small that $D\left(a_{2}, r_{2}\right) \subseteq D_{1}$ and $a_{1} \notin \overline{D_{2}}$, and also $r_{2} \leq r_{1} / 2$.
We continue in this style. In the next step, we find an $a_{3} \neq a_{2}, a_{3} \in D_{2}$, and from then on, we'll work in a disk D_{3} about a_{3} that is so small that it is contained in D_{2} and, at the same time, $a_{2} \notin \overline{D_{3}}$, and also $r_{3} \leq r_{2} / 2$.
We obtain a sequence $a_{n} \in P$. This sequence is a Cauchy sequence because its tails $\left(a_{k}\right)_{k \geq n}$ lie in the disks D_{n}, and $r_{n} \rightarrow 0$. So $a_{n} \rightarrow a$, and here $a \in P$ since P is closed, but by construction, $a_{n} \nrightarrow z_{k}$ for all k (at the first step, we move to a disk that is at a distance from z_{1}, then we avoid z_{2} in the second step etc.).
