Solutions homework # 3: Complex Analysis 1

1. (a) If a, is bounded, then this follows from Bolzano-Weierstra8. If a,, is
unbounded, then we can extract a subsequence that converges to oo or
—00.

(b) T'll do this under the additional assumption that A € R. Essentially the
same arguments also work if A = +o0.
Given any k£ > 1, we can find an accumulation point a > A — 1/k. Tt
follows that there is an a,, € (a —1/k,a+ 1/k) C (A —2/k, A+ 2/k).
So a,, — A, and this says that A is an accumulation point, as claimed.

(c) Let me first show that A, as defined in part (a), has these properties.
Property (i) is clear from the fact that A is an accumulation point.
If we had an infinite subsequence a,, > B > A, then a suitable sub-
subsequence would converge to an (extended) limit a > B > A, but this
is impossible because A is the largest accumulation point. So (ii) holds.
Conversely, if A satisfies (i), (ii), then A is an accumulation point: for
any € > 0, the interval (A — e, A + €) contains infinitely many a,, as we
see by combining (i), (ii). By (ii), A is the largest accumulation point.

(d) Denote the expression on the RHS by C. For any k, we have that
SUp,>; an > A, because A is an accumulation point. So C' > A. On
the other hand, for any ¢ > 0, we will (eventually) have that sup,,~; a, <

A + ¢, for all sufficiently large k. This follows from (c)(ii). We now see
that C' < A.

(e) The sequence (Sup,,>j, @, )r>1 is decreasing, so the inf equals the lim.

(f) If a, — a, then a is the only accumulation point of this sequence, so
liminf a,, = limsupa,(= a). Conversely, if this holds, then a, has to
converge to this common value: if not, then we would find an infinite
subsequence with |a,, — a] > € > 0, but this would lead to another
accumulation point, and the smallest accumulation would not be the
same as the largest.

2. Proof. Suppose that we had P = {2, : n > 1}. Since z; is not isolated,
we can find other points in P. Select such a point and call it a;. Also, let
r = |Zl —CL1’/2 > 0.

Next, since a; € P is not isolated, the disk D; = D(ay,r;) must contain
other points of P. Pick one and call it as, and also take ry > 0 so small that
D(CLQ,T’Q) Q D1 and aq ¢ Dg, and also T9 S T1/2.

We continue in this style. In the next step, we find an a3 # as, ag € Do,
and from then on, we’ll work in a disk D3 about as that is so small that it is
contained in Dy and, at the same time, as ¢ D3, and also 3 < ry/2.

We obtain a sequence a,, € P. This sequence is a Cauchy sequence because
its tails (ay)g>n lie in the disks D,,, and r,, — 0. So a,, — a, and here a € P
since P is closed, but by construction, a,, / z for all k& (at the first step, we
move to a disk that is at a distance from z;, then we avoid z5 in the second
step etc.). O



