
Solutions homework # 3: Complex Analysis 1

1. (a) If an is bounded, then this follows from Bolzano-Weierstraß. If an is
unbounded, then we can extract a subsequence that converges to ∞ or
−∞.

(b) I’ll do this under the additional assumption that A ∈ R. Essentially the
same arguments also work if A = ±∞.

Given any k ≥ 1, we can find an accumulation point a > A − 1/k. It
follows that there is an ank

∈ (a − 1/k, a + 1/k) ⊆ (A − 2/k,A + 2/k).
So ank

→ A, and this says that A is an accumulation point, as claimed.

(c) Let me first show that A, as defined in part (a), has these properties.
Property (i) is clear from the fact that A is an accumulation point.
If we had an infinite subsequence ank

> B > A, then a suitable sub-
subsequence would converge to an (extended) limit a ≥ B > A, but this
is impossible because A is the largest accumulation point. So (ii) holds.

Conversely, if A satisfies (i), (ii), then A is an accumulation point: for
any ε > 0, the interval (A − ε, A + ε) contains infinitely many an, as we
see by combining (i), (ii). By (ii), A is the largest accumulation point.

(d) Denote the expression on the RHS by C. For any k, we have that
supn≥k an ≥ A, because A is an accumulation point. So C ≥ A. On
the other hand, for any ε > 0, we will (eventually) have that supn≥k an ≤
A + ε, for all sufficiently large k. This follows from (c)(ii). We now see
that C ≤ A.

(e) The sequence (supn≥k an)k≥1 is decreasing, so the inf equals the lim.

(f) If an → a, then a is the only accumulation point of this sequence, so
lim inf an = lim sup an(= a). Conversely, if this holds, then an has to
converge to this common value: if not, then we would find an infinite
subsequence with |ank

− a| ≥ ε > 0, but this would lead to another
accumulation point, and the smallest accumulation would not be the
same as the largest.

2. Proof. Suppose that we had P = {zn : n ≥ 1}. Since z1 is not isolated,
we can find other points in P . Select such a point and call it a1. Also, let
r1 = |z1 − a1|/2 > 0.

Next, since a1 ∈ P is not isolated, the disk D1 = D(a1, r1) must contain
other points of P . Pick one and call it a2, and also take r2 > 0 so small that
D(a2, r2) ⊆ D1 and a1 /∈ D2, and also r2 ≤ r1/2.

We continue in this style. In the next step, we find an a3 6= a2, a3 ∈ D2,
and from then on, we’ll work in a disk D3 about a3 that is so small that it is
contained in D2 and, at the same time, a2 /∈ D3, and also r3 ≤ r2/2.

We obtain a sequence an ∈ P . This sequence is a Cauchy sequence because
its tails (ak)k≥n lie in the disks Dn, and rn → 0. So an → a, and here a ∈ P
since P is closed, but by construction, an 6→ zk for all k (at the first step, we
move to a disk that is at a distance from z1, then we avoid z2 in the second
step etc.).


