Homework solution \# 1: Complex Analysis 1

1. Proof. Assume first that A is closed. Let $z_{n} \in A, z \in \mathbb{C}, z_{n} \rightarrow z$. We must show that $z \in A$. This is actually clear because if we had $z \notin A$, then, since $\mathbb{C} \backslash A$ is open, we could find a whole disk $D(z, \epsilon)=\{w \in \mathbb{C}:|w-z|<\epsilon\}$ with $D(z, \epsilon) \cap A=\emptyset$. However, $z_{n} \rightarrow z$ implies that $z_{n} \in D(z, \epsilon)$ for all large n, and this contradicts our assumption that $z_{n} \in A$.
Conversely, assume the condition on the sequences and let $z \in \mathbb{C} \backslash A$. We must find a disk $D(z, \epsilon) \subseteq \mathbb{C} \backslash A$. If that is not possible, then for each n we can choose a $z_{n} \in D(z, 1 / n), z_{n} \in A$. Clearly, $z_{n} \rightarrow z$, so $z \in A$ by hypothesis. We have again reached a contradiction.
2. Proof. Pick a point $z_{n} \in K_{n}$ from each set. Then in particular $z_{n} \in K_{1}$ for all n, and this set is compact, so we can extract a convergent subsequence $z_{n_{k}} \rightarrow z$. Since K_{1} is closed, we obtain that $z \in K_{1}$. Now $z_{n} \in K_{j}$ for $n \geq j$ and any fixed j and again this set is closed, so it also follows that $z \in K_{j}$, and thus z is a point in the intersection.
