- 1. Let $a_n \in \mathbb{R}$ and call $a \in \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ an *accumulation point* if there exists a subsequence $a_{n_j} \to a$; here, convergence to $a = \pm \infty$ is defined in the expected way.
 - (a) Show that a_n always has at least one accumulation point (in \mathbb{R} !).
 - (b) Show that

$$A = \sup\{a \in \overline{\mathbb{R}} : a \text{ is an accumulation point of } a_n\}$$

is an accumulation point itself. We now define $\limsup_{n\to\infty} a_n := A$.

- (c) Show that A is the unique (extended) number with the following properties: (i) If B < A, then $a_n > B$ for infinitely many $n \in \mathbb{N}$; (ii) if B > A, then $a_n > B$ for at most finitely many $n \in \mathbb{N}$.
- (d) Prove that

$$A = \inf_{k \ge 1} \sup_{n \ge k} a_n.$$

(e) Prove that also

$$A = \lim_{k \to \infty} \sup_{n \ge k} a_n.$$

- (f) Prove that a_n converges (in the extended sense, in \mathbb{R}) precisely if $\liminf a_n = \limsup a_n$, where we can define $\liminf a_n$ similarly, as the smallest accumulation point of $\{a_n\}$.
- 2. Let $P \subseteq \mathbb{C}$. Recall that $z \in P$ is called an *isolated point* if there is an r > 0 so that $D(z,r) \cap P = \{z\}$. Show that a (non-empty) closed set P with no isolated points (this is also called a *perfect* set) must be uncountable.
- 3. Problems 2.2.2, 3, 4, 10, 11

"due:" 9/16