Homework \# 3: Complex Analysis 1

1. Let $a_{n} \in \mathbb{R}$ and call $a \in \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ an accumulation point if there exists a subsequence $a_{n_{j}} \rightarrow a$; here, convergence to $a= \pm \infty$ is defined in the expected way.
(a) Show that a_{n} always has at least one accumulation point (in $\overline{\mathbb{R}}$!).
(b) Show that

$$
A=\sup \left\{a \in \overline{\mathbb{R}}: a \text { is an accumulation point of } a_{n}\right\}
$$

is an accumulation point itself. We now define $\lim \sup _{n \rightarrow \infty} a_{n}:=A$.
(c) Show that A is the unique (extended) number with the following properties: (i) If $B<A$, then $a_{n}>B$ for infinitely many $n \in \mathbb{N}$; (ii) if $B>A$, then $a_{n}>B$ for at most finitely many $n \in \mathbb{N}$.
(d) Prove that

$$
A=\inf _{k \geq 1} \sup _{n \geq k} a_{n} .
$$

(e) Prove that also

$$
A=\lim _{k \rightarrow \infty} \sup _{n \geq k} a_{n} .
$$

(f) Prove that a_{n} converges (in the extended sense, in $\overline{\mathbb{R}}$) precisely if lim inf $a_{n}=$ $\lim \sup a_{n}$, where we can define $\lim \inf a_{n}$ similarly, as the smallest accumulation point of $\left\{a_{n}\right\}$.
2. Let $P \subseteq \mathbb{C}$. Recall that $z \in P$ is called an isolated point if there is an $r>0$ so that $D(z, r) \cap P=\{z\}$. Show that a (non-empty) closed set P with no isolated points (this is also called a perfect set) must be uncountable.
3. Problems 2.2.2, 3, 4, 10, 11

