Homework \# 1: Complex Analysis 1

1. Call a set $A \subseteq \mathbb{C}$ closed if $\mathbb{C} \backslash A$ is open. Show that A is closed if and only if $z_{n} \in A, z_{n} \rightarrow z$ (with $z \in \mathbb{C}$) implies that $z \in A$.
2. Suppose that $K_{1} \supseteq K_{2} \supseteq K_{3} \supseteq \ldots$ is a decreasing sequence of non-empty compact sets $K_{n} \subseteq \mathbb{C}$. Show that then $\bigcap_{n \geq 1} K_{n} \neq \emptyset$.
3. Problems 1.6.4, 5, 6, 7.
