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Abstract

Let T be a self-adjoint operator acting in a separable Hilbert space H.
We establish a correspondence between the reducing subspaces of T that
come from a spectral projection and the convex, norm-closed bands in the
set of finite Borel measures on R.

IfH is not separable, we still obtain a reducing subspace corresponding
to each convex norm-closed band.

These observations lead to a unified treatment of various reducing
subspaces; moreover, they also settle some open questions and suggest
new decompositions.

1 Reducing subspaces and bands

Throughout this paper, we fix a self-adjoint operator T acting in Hilbert space
H. As T is self-adjoint, it admits the representation T =

∫
R
λ dE(λ) where E(·)

is a projection-operator-valued measure. Also, to each ψ ∈ H, we associate its
spectral measure, ρψ(M) = ‖E(M)ψ‖2.
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Consider a set G of those ψ ∈ H whose spectral measures, ρψ, have certain
prescribed properties. The question we wish to address is: is the set G the
range of a spectral projection? That is, is there a Borel set M ⊂ R so that
G = E(M)H? More generally, is G even a reducing subspace?

While our answer, Theorem 1.1, is rather straightforward, we believe that
it is a useful way of thinking about reducing subspaces. It provides a unified
treatment for the spectral decompositions arising in quantum dynamics. More
significantly, it suggests further refinements and settles some open questions.
We will discuss these applications in the second section.

We need some notation. Let M denote the Banach space of finite Borel
measures on R (the norm of a measure is equal to its total variation). Further,
we writeM+ to denote the subset of positive measures with the induced (norm)
topology. A subset B ⊂ M+ is called a band if it is closed with respect to
absolute continuity. That is, if ν ∈ B, µ ∈ M+ and µ � ν then µ ∈ B. For a
subset B ⊂M+, we define HB = {ψ ∈ H : ρψ ∈ B}.

Theorem 1.1 If B ⊂ M+ is a convex (norm-)closed band then HB is a re-
ducing subspace. Moreover, if H is separable, HB is the range of a spectral
projection.

Of course, not all reducing subspaces for T are the range of a spectral pro-
jection. (Consider, for example, the direct sum of an operator with itself.) We
prepare for the proof with two simple lemmas. We will write fµ for the measure
(fµ)(S) =

∫
S
f(x) dµ(x).

Lemma 1.2 Let B be a convex closed band. For every µ ∈ M+, there is a
Borel set M such that
(i) χMµ ∈ B, and
(ii) if ν ∈ B and ν � µ, then ν � χMµ.

Proof. Let

c = sup{µ(S) : S ⊂ R Borel set, χSµ ∈ B}.

We claim that the supremum is attained for some Borel set M . To see this, pick
Borel sets M ′n so that χM ′nµ ∈ B and µ(M ′n) ≥ c− 1/n. Define M1 = M ′1 and
Mn = M ′n ∪Mn−1 for each n ≥ 2. As χMn

µ � 1
2 (χM ′nµ + χMn−1µ), induction

on n shows that χMn
µ ∈ B. Of course, we still have µ(Mn) ≥ c − 1/n. Now

M =
⋃
n∈NMn has the desired properties: µ(M) = c and ‖χMµ − χMnµ‖ =

µ(M \Mn)→ 0 by monotone convergence. Thus χMµ ∈ B because B is closed.
It remains to check property (ii). As ν � µ, there are Borel sets S, T with

S ⊂M , T ∩M = ∅, so that ν is equivalent to χS∪Tµ. It follows that χTµ ∈ B,
but then also χM∪Tµ ∈ B because this measure is absolutely continuous with
respect to 1

2 (χMµ+χTµ). The definitions of c and M now imply that µ(T ) = 0,
so ν � χMµ and (ii) holds. �

The decomposition µ = χMµ+ χR\M µ performed in the Lemma is unique.
That is, the set M is uniquely determined up to sets of µ measure zero. To
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see this, notice that if the supremum c were achieved for distinct sets, M and
N , then it must also happen that µ(M ∪ N) = c. This shows that µ(N) =
µ(M ∪N) = µ(M) so M and N differ by a set of zero µ measure.

Lemma 1.3 If ψn ∈ H, ψn → ψ, then ρψn → ρψ.

Proof. For ϕ,ψ ∈ H, the definition of the total variation of a measure gives

‖ρϕ − ρψ‖ = sup
∑
n

∣∣∣‖E(Mn)ϕ‖2 − ‖E(Mn)ψ‖2
∣∣∣,

where the supremum is taken over all countable partitions of R into disjoint
Borel sets Mn. As∣∣∣‖E(M)ϕ‖2 − ‖E(M)ψ‖2

∣∣∣ ≤ ‖E(M)(ϕ− ψ)‖ ·
(
‖E(M)ϕ‖+ ‖E(M)ψ‖

)
,

we obtain

‖ρϕ − ρψ‖

≤
√

2 sup
{∑

n

‖E(Mn)(ϕ− ψ)‖2
∑
n

(
‖E(Mn)ϕ‖2 + ‖E(Mn)ψ‖2

)}1/2

=
√

2 ‖ϕ− ψ‖
(
‖ϕ‖2 + ‖ψ‖2

)1/2
.

Now the assertion is obvious. �

Proof of Theorem 1.1. We begin with the case when H is separable. Let {ψn :
n ∈ N} be a basis for H and define a measure Λ =

∑
n 2−nρψn . Notice that for

every ψ ∈ H, ρψ � Λ.
By applying Lemma 1.2 to Λ, we obtain a Borel set M . We will now show

that HB = E(M)H: If ψ ∈ HB then ρψ ∈ B. But ρψ � Λ, so, by Lemma 1.2,
ρψ � χMΛ. Thus ψ ∈ E(M)H. Conversely, if ψ ∈ E(M)H then ρψ � χMΛ
and so ρψ ∈ B, or equivalently, ψ ∈ HB .

Consider now, the case that H is not separable. Because B is a convex
band and ρψ1+ψ2 � 1

2 (ρψ1 + ρψ2), HB is a subspace of H. As B is closed,
Lemma 1.3 shows that HB is closed. Now for any ψ ∈ H, the cyclic subspace
generated by ψ and T is separable. Thus, by our earlier treatment of the
separable case, for any bounded measurable function f , ψ ∈ HB ⇒ f(T )ψ ∈ HB
and ψ ∈ H⊥B ⇒ f(T )ψ ∈ H⊥B . This proves that HB is a reducing subspace. �

For separable spaces, the converse of Theorem 1.1 is both true and easily
proved: E(M)H is equal to HB when B = {µ : µ(R \M) = 0}. This gives a
correspondence between convex closed bands inM+ and the ranges of spectral
projections. For a fixed operator, this correspondence is not one-to-one: dif-
ferent bands can generate the same subspace. However, if HB = HB′ for all
self-adjoint operators on an infinite-dimensional Hilbert space H, then B = B′.
To prove this observation, assume that there is a µ ∈ B \ B′ and consider
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a self-adjoint operator whose spectral representation is multiplication by the
independent variable in the space L2(R, µ).

The final general remark on Theorem 1.1 concerns the possibility of “com-
pleting” reducing subspaces. Namely, one can show that if H0 is a reducing
subspace then B = {ρψ : ψ ∈ H0} is a convex, closed band. Thus one can form
H′0 = HB , which, by its definition, is the smallest reducing subspace containing
H0 that is generated by a convex, closed band. In the separable case, The-
orem 1.1 and its converse show that it is also the smallest reducing subspace
containing H0 that is the range of a spectral projection.

2 Some applications

First of all, let us point out that the usual decompositions can also easily be
obtained with the aid of Theorem 1.1. For example,

{µ ∈M+ : µ is absolutely continuous},
{µ ∈M+ : µ({x}) = 0 for all x ∈ R}

are convex, closed bands. These give rise to the absolutely continuous and
continuous subspaces, respectively. In this way, we obtain the well known de-
composition of an operator into absolutely continuous, singular continuous, and
point parts. The refined decompositions of the singular continuous subspace
with respect to Hausdorff measures, that were introduced by Last [4], can be
obtained in the same fashion. For example, Last’s α-continuous subspace, Hαc,
corresponds to HB for

B = {µ ∈M+ : µ(S) = 0 for all sets S of zero α-Hausdorff measure}.

Finally, there is the transient/recurrent decomposition of Avron and Simon
[2]. This will be discussed (and refined) shortly. Let us first note another
consequence of Theorem 1.1.

Recall that a measure µ is called Rajchman if lim|t|→∞ µ̂(t) = 0; here, µ̂
denotes the Fourier transform µ̂(t) =

∫
R
e−itx dµ(x). An absolutely continuous

measure is Rajchman by the Riemann-Lebesgue Lemma, while Wiener’s The-
orem shows that a point measure is never Rajchman. A singular continuous
measure may or may not be Rajchman.

Corollary 2.1 The set HRaj = {ψ ∈ H : ρψ is Rajchman} is a reducing sub-
space.

Proof. The set of Rajchman measures is obviously convex and closed. That
it is also a band is known as the Milicer-Gruz̆ewska Theorem [9, Chapter XII,
Theorem 10.9]. �

The question “is HRaj a reducing subspace?” appeared in [1, 4] and was the
original motivation for the present work. Corollary 2.1 also follows from Lyons’s
characterization of the Rajchman measures as those which give zero weight to
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all Weyl sets [5]. In this context, a Theorem of Mokobodzki is of interest; it
gives criteria for a band to consist of exactly those measures which annihilate
certain sets. See [3, Chapter IX] for further information on this.

We are grateful to B. Simon for pointing out to us that an earlier proof
(using the Lyons/Mokobodzki results) was unnecessarily complicated.

If T is the Hamiltonian of a quantum mechanical system and if the initial
state ψ is normalized (i.e. ‖ψ‖ = 1), then |ρ̂ψ(t)|2 is the probability of finding
the system in the state ψ at time t. Thus it is interesting to study other
decompositions of T which carry information on the asymptotics of the Fourier
transform of the spectral measures. A large class of such decompositions can be
obtained using the following Proposition, which comes in two variants.

Proposition 2.2 Let P be a convex subset of Cb(R), and suppose that C∞c (R)∗
P ⊂ P . Define

B1 = {µ ∈M+ : µ̂ ∈ P}, B2 = {ρψ : ψ ∈ H, ρ̂ψ ∈ P}.

Then B1 and B2 are convex, closed bands.

Here, Cb(R) is the Banach space of bounded continuous functions on R, C∞c is
the space of infinitely differentiable functions of compact support and the star
denotes convolution.

Proof. B1 and B2 are obviously closed and it is also clear that B1 is convex.
We will now show that B1 is a band. So suppose that ν ∈ B1 and µ ∈M+ with
µ� ν. By the definition of B1, there are νn ∈M+, so that νn → ν and ν̂n ∈ P .
By the Radon-Nikodym Theorem, we have that µ = fν for some f ∈ L1(R, ν),
f ≥ 0. If ε > 0 is given, we determine a function g ≥ 0 with ĝ ∈ C∞c (R), so
that ‖f − g‖L1(R,ν) < ε. To see that this can be done, pick h ∈ C∞c (R), h ≥ 0
with ‖f − h‖L1(R,ν) < ε/2. Next, take any real valued θ 6≡ 0 with θ̂ ∈ C∞c (R),
and let ϕ(x) = θ2(x)/

∫
θ2. Then ϕ ≥ 0, ϕ̂ ∈ C∞c (R), and

∫
ϕ(x) dx = 1. Let

ϕδ(x) = (1/δ)ϕ(x/δ); then g = ϕδ ∗ h with a sufficiently small δ > 0 has the
desired properties.

Now consider the measures gνn ∈ M+. We have that (gνn)̂ = ĝ ∗ ν̂n ∈ P .
Moreover,

‖gνn − µ‖ ≤ ‖g‖∞‖νn − ν‖+ ‖g − f‖L1(R,ν) < 2ε

for all sufficiently large n. Hence µ ∈ B1, as desired.
To prove the claim for B2, note that a measure of the form fρψ with f ∈

L1(R, ρψ), f ≥ 0 is a spectral measure (i.e. fρψ = ρϕ for some ϕ ∈ H). So
the argument from above can also be used to show that B2 is a band. Finally,
suppose that ψ1, ψ2 ∈ H and ρ̂ψi ∈ P . It is easy to see, by restricting to the
reducing subspace generated by ψ1, ψ2 and using spectral representations, that
any convex combination tρψ1 + (1 − t)ρψ2 is again a spectral measure. Thus
{ρψ : ρ̂ψ ∈ P} and hence also B2 are convex sets. �

Given a space P satisfying the hypotheses of Proposition 2.2, we can form
the subspaces HB1 and HB2 . Of course, since B1 ⊃ B2, we also have that
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HB1 ⊃ HB2 , and the inclusion may be proper, as we will see in a moment. For
most purposes, HB2 is the more useful space; it can also be described as follows.

Theorem 2.3 If P and B2 are as in Proposition 2.2, then

HB2 = {ψ ∈ H : ρ̂ψ ∈ P}.

Proof. By definition,

HB2 = {ψ ∈ H : There are ψn ∈ H so that ρ̂ψn ∈ P and ρψn → ρψ}. (1)

Lemma 1.3 now shows that the set {ψ ∈ H : ρ̂ψ ∈ P} from the statement of
Theorem 2.3 is contained in HB2 .

Conversely, suppose that ψ ∈ HB2 . By (1), there are ϕ(n) ∈ H so that
ρ̂ϕ(n) ∈ P and ρϕ(n) → ρψ. We will now work in the reducing subspace of T
generated by ψ and the ϕ(n); clearly, this space (call it H0) is separable. We
may pass to a spectral representation of this part of T and thus assume that
TPH0 is multiplication by the variable in the space

H0 =
N⊕
i=1

L2(R, fiρ).

Here, ρ ∈ M+, N ∈ N ∪ {∞}, and fi ≥ 0, fi ∈ L1(R, ρ). Write ψ = (ψi)Ni=1,
ϕ(n) = (ϕ(n)

i )Ni=1, and let

g(x) =
N∑
i=1

|ψi(x)|2 fi(x), gn(x) =
N∑
i=1

∣∣∣ϕ(n)
i (x)

∣∣∣2 fi(x).

Then g, gn ∈ L1(R, ρ) and ρψ = gρ, ρϕ(n) = gnρ; in particular,

‖gn − g‖L1(R,ρ) = ‖ρϕ(n) − ρψ‖ → 0. (2)

Now define ψ(n) ∈ H0 by ψ(n)
i (x) = ψi(x)

√
gn(x)/g(x) if g(x) 6= 0 and ψ(n)

i (x) =
0 if g(x) = 0. Then ρψ(n) = ρϕ(n) , and a brief computation shows that

‖ψ(n) − ψ‖2 =
∫ ∣∣∣√gn(x)−

√
g(x)

∣∣∣2 dρ(x).

This tends to zero by (2) and the elementary inequality
(√

a−
√
b
)2

≤ |a− b|
(a, b ≥ 0). �

There are many possible choices for P . With P = C0(R), the continuous
functions vanishing at infinity, one recovers HRaj (note that since C0 is a closed
subspace of Cb, the closure in the definition of B1, B2 is superfluous). Next,
P = Lp ∩ Cb also satisfies the hypotheses of Proposition 2.2. So Theorem 2.3
shows that the spaces

Hp = {ψ ∈ H : ρ̂ψ ∈ Lp(R)}
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are reducing spaces for 1 ≤ p < ∞. This answers a question of Avron and
Simon [2, pg. 9]. It is known that H2 = Hac [7], so for 1 ≤ p ≤ 2, the spaces Hp
are subspaces of Hac (since Lp ∩ Cb ⊂ L2 ∩ Cb for these p). Also, H1 = Htac,
the transient subspace introduced in [2]. For our purposes, we may take this as
the definition of Htac, so

Htac = {ψ ∈ H : ρ̂ψ ∈ L1(R)}.

The space S of infinitely differentiable functions which together with their
derivatives decay faster than any polynomial is also convex and closed under
convolution with C∞c functions, so using Proposition 2.2 and Theorem 2.3, we
deduce that

HS = {ψ ∈ H : ρ̂ψ ∈ S}

also is a reducing subspace. Since Ŝ = S, there is the alternate description

HS = {ψ ∈ H : ρψ = g dx with g ∈ S}.

From the results of [2], we have that HS = Htac. Indeed, it is obvious that
HS ⊂ Htac, and conversely, if ρ̂ψ ∈ L1, then ρψ = f(x) dx with some continuous
density f . In particular, the set Ω = {x : f(x) > 0} is open, and we can
approximate ρψ by measures of the form g(x) dx, with g ∈ S and g supported
by Ω. Now an argument similar to the one used in the proof of Theorem 2.3
shows that ψ itself can be approximated by vectors whose spectral measures are
absolutely continuous with densities in S. Thus HS ⊃ Htac, as claimed.

We now also see that the band B1 from Proposition 2.2 can lead to a space
larger than the one from Theorem 2.3. Namely, if P = S, then B1 is the set
of all absolutely continuous measures from M+ (again by an approximation
argument), so HB1 = Hac, which, of course, can be strictly larger than HB2 =
Htac.

We have already mentioned the fact that Theorem 2.3 suggests refined de-
compositions. We conclude this paper with a discussion of one such example.
Let

Pα = L2(R, (1 + x2)α/2 dx) ∩ Cb(R).

Then Pα satisfies the assumptions of Proposition 2.2 for every α ∈ R, and if we
denote the corresponding space from Theorem 2.3 by Hα, then

Hα =
{
ψ ∈ H :

∫
|ρ̂ψ(t)|2 (1 + t2)α dt <∞

}
.

For α ≥ 0, the scale of these reducing subspaces gives a refinement of the
transient/recurrent decomposition of Avron and Simon.

Theorem 2.4 a) If α ≥ β then Hα ⊂ Hβ.
b) H0 = Hac and if α > 1/2, Hα = Htac.
c) For any α > 0, it may happen that Hα 6= Hac.
d) There are operators with H1/2 6= Htac.
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Proof. a) This is immediate from Pα ⊂ Pβ (α ≥ β).
b) As P0 = L2∩Cb, the identification H0 = Hac is one of the facts mentioned

above. The Cauchy-Schwarz inequality shows that Pα ⊂ L1 for α > 1/2, thus
Hα ⊂ Htac for these α. On the other hand, the P = S characterization of Htac
implies that Htac ⊂ Hα for all α.

c) Given α > 0, we will construct a (Cantor type) set C of positive (and
finite) Lebesgue measure, so that for all non-zero f ∈ L1(C), f̂ /∈ Pα. Then
the operator of multiplication by the variable in L2(C) has H0 = Hac = H, but
Hα = {0}, so this construction will prove the claim.

So let α > 0, and fix ε ∈ (0, 2α) and l0 ∈ (0, 1). For technical reasons,
we also take l0 so small that (1 + ε)(l0/2)ε ≤ 1. Put C0 = [0, l0]. To carry
out the general step, assume that Cn−1 has been constructed and that Cn−1

is the union of 2n−1 closed, disjoint intervals of length ln−1. For each of these
intervals, delete an open subinterval in the middle of the old interval to obtain
two smaller intervals of length ln each, where ln is determined from the equation

2ln(1− lεn) = ln−1(1− lεn−1).

Note that the left-hand side is strictly increasing as a function of ln ∈ [0, ln−1/2],
and it is zero at ln = 0 and larger than the right-hand side at ln = ln−1/2.
So ln ∈ (0, ln−1/2) is well-defined. We can now let Cn be the union of the
2n new intervals obtained from this process, and we put C =

⋂
n∈N Cn. The

sequence 2nln is decreasing, hence q = limn→∞ 2nln exists. Since Cn ⊂ Cn−1,
we also have that |C| = q. The recursion defining ln shows that the combination
2nln(1− lεn) is independent of n. Letting n→∞ therefore gives

q = 2nln(1− lεn) for all n ∈ N0;

in particular, q > 0. The length of the intervals that are deleted at step n is
equal to ln−1 − 2ln, hence

|[0, ln] \ C| =
∞∑
k=1

2k−1(ln+k−1 − 2ln+k)

= lim
N→∞

2−n(2nln − 2N lN ) = 2−n(2nln − q) = l1+ε
n .

If x ∈ C, then [x− ln, x+ ln] \ C contains a translate of [0, ln] \ C, so

|[x− ln, x+ ln] \ C| ≥ l1+ε
n .

Thus if f is supported by C, and if x ∈ C, f(x) 6= 0, then∫ 1

−1

|f(x+ t)− f(x)|2 dt

|t|1+2α
≥
∫ ln

−ln
|f(x+ t)− f(x)|2 dt

|t|1+2α

≥ |f(x)|2l−1−2α
n |[x− ln, x+ ln] \ C|

≥ |f(x)|2lε−2α
n →∞ (n→∞).
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But if f̂(x)(1+x2)α/2 were in L2, then the integral estimated above would have
to exist for almost every x ∈ R (see, e.g., [8]). Hence the set C does not support
non-zero functions with Fourier transform in Pα.

d) A special case of results of Polking [6] states that there are nowhere dense
sets C that support functions with Fourier transform in P1/2. So if the operator
T is again multiplication by the variable in L2(C), then H1/2 6= {0}. On the
other hand, C does not support continuous functions and hence f̂ /∈ L1 for
all f ∈ L1(C), f 6≡ 0. Therefore Htac = {0}. This proves the final claim of
Theorem 2.4. �

The spaces Hα can also be used for α < 0. One then gets a decomposition of
the continuous subspace Hc, which is similar to the decompositions discussed in
[4]. Here, the interesting range for the parameter α is [−1/2, 0]. More precisely,
one can show that H−1/2 ⊂ Hc (where, in general, equality need not hold) and
Hα = H if α < −1/2.

The decomposition discussed above is based on the usual Sobolev spaces and
so is rather natural. One can, of course, consider other decompositions which
are similar in spirit. For instance,

Pβ = {f ∈ Cb(R) : f(x) = o(|x|−β) as |x| → ∞},

gives a decomposition of T which, roughly speaking, classifies vectors according
to the Fourier dimension of the support of the associated spectral measure.

Acknowledgment: C.R. acknowledges financial support by the Heisenberg
program of the Deutsche Forschungsgemeinschaft.
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