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Abstract. We present a direct and rather elementary method for defining
and analyzing one-dimensional Schrödinger operators H = −d2/dx2 + µ with
measures as potentials. The basic idea is to let the (suitably interpreted)
equation −f ′′+µf = zf take center stage. We show that the basic results from

direct and inverse spectral theory then carry over to Schrödinger operators with
measures.

1. Introduction

In this paper we will discuss the direct and inverse spectral theory of generalized
Schrödinger operators

H = − d2

dx2
+ µ,(1.1)

with a signed Borel measure µ as the potential. In the case where µ is absolutely
continuous, dµ(x) = V (x) dx, the theory of course reduces to the theory of the usual
Schrödinger operator −d2/dx2 +V (x). Operators of the form (1.1) have been used
to model singular interactions, which are located on small sets. See, for example,
[1, 2, 3, 7, 8].

We will make essential use of the fact that the problem is one-dimensional.
Namely, we will use a direct approach based on the solutions of the (suitably inter-
preted) equation −f ′′+µf = zf instead of quadratic forms, which is the customary
tool in the theory of Schrödinger operators with measures. As one advantage of
this approach, we do not need semi-boundedness assumptions on µ; the drawback
is that our method only works in the one-dimensional case.

We will discuss the general direct and inverse spectral theory of the operators
−d2/dx2 + µ, using this approach. The setup and basic definitions may be found
in the following section. Given this material, it will then be rather straightforward
to extend the classical theory of the spectral representation of one-dimensional
Schrödinger operators (based on the Titchmarsh-Weyl m function). Therefore, our
discussion of the direct spectral theory in Sect. 3 will be rather sketchy. However,
things get more challenging in inverse spectral theory. Here, the smoothness of the
potential plays a decisive role, and clearly, a measure µ can be even more singular
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than a potential. We will take the recent treatment of [9] as a guideline. More
specifically, we will discuss and use the tool of de Branges spaces, and we will
introduce a so-called φ function as the spectral data. Then, the inverse problem is
to recover µ from φ. It turns out, as expected, that φ has less smoothness than in the
case where µ is absolutely continuous. Namely, φ is no longer absolutely continuous
but (in general) only of bounded variation. This larger set of φ functions is in one-
to-one correspondence to the class of (signed) measures µ. These results will be
discussed in Sect. 4–6.

2. Schrödinger operators with measures

Let µ be a signed measure on the Borel subsets of [0,∞) with |µ|([0, N ]) < ∞
for all N > 0. We will define the operator −d2/dx2 + µ as a self-adjoint operator
on the Hilbert space L2(0,∞) using a direct method rather than quadratic forms.

For 0 ≤ a < b <∞, denote by AC(a, b) the space of complex valued absolutely
continuous functions on (a, b). So f ∈ AC(a, b) means there exists g ∈ L1(a, b) so
that f(x) = f(c) +

∫ x
c
g(t) dt for all x ∈ (a, b) and with c ∈ (a, b). AC(0,∞) is

defined locally, that is, f ∈ AC(0,∞) if f ∈ AC(0, b) for all b > 0.
Fix a > 0 and define, for f ∈ AC(0,∞),

(Af)(x) = f ′(x)−
∫ x

a

f(t) dµ(t);

here,
∫ x
a
· · · is short-hand for∫ x

a

f(t) dµ(t) =

{∫
[a,x]

f(t) dµ(t) x ≥ a
−
∫

(x,a)
f(t) dµ(t) x < a

.

Clearly, Af is only defined as an element of L1,loc(0,∞), or, in other words, almost
everywhere with respect to Lebesgue measure. Af will play the role of a quasi-
derivative of f . We can now define the maximal operator associated with the
differential expression −d2/dx2 + µ. Let

D(T ) = {f ∈ L2(0,∞) : f,Af ∈ AC(0,∞), (Af)′ ∈ L2(0,∞)}
Tf = −(Af)′.

It is clear that neither the domain of T , D(T ), nor the definition of T depend on
the choice of a > 0. We want to establish regularity at x = 0; in particular, we can
then take a = 0 in the above definitions.

Proposition 2.1. If f ∈ D(T ), then f,Af ∈ AC[0,∞).

Here, we say that f ∈ AC[0,∞) if there is a function g ∈ L1,loc([0,∞)), so that
f(x) = f(0) +

∫ x
0
g(t) dt. Put more precisely, Proposition 2.1 then claims that the

functions f,Af have extensions to [0,∞) which are in AC[0,∞).

Proof. To prove the statement on Af , we only need to observe that (Af)′ ∈
L2(0,∞) ⊂ L1,loc([0,∞)) and let c→ 0+ in

(Af)(x) = (Af)(c) +
∫ x

c

(Af)′(t) dt.

As for f , we have that

f(x) = f(c) +
∫ x

c

f ′(t) dt = f(c) +
∫ x

c

(Af)(t) dt+
∫ x

c

dt

∫ t

c

dµ(s) f(s).
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By using Fubini’s Theorem in the double integral, we thus see that

‖f‖L∞(ε,c) ≤ C + ‖f‖L∞(ε,c)

∫
(ε,c)

(s− ε) d|µ|(s).

The constant C is independent of ε, so by letting ε → 0+ and then taking c > 0
sufficiently small, we see that f is bounded on (0, c). Hence f ′(x) = (Af)(x) +∫ x
c
f(t) dµ(t) is in L1,loc([0,∞)).

This argument was local, so it is also true that f,Af ∈ AC[0, N) if ϕf ∈ D(T ) for
some function ϕ which is equal to 1 on (0, N).

Proposition 2.1 allows us to take a = 0 in the definition of Af . So from now on,
we will define Af for f ∈ AC[0, N) by

(Af)(x) = f ′(x)−
∫

[0,x]

f(t) dµ(t).(2.1)

To develop the theory of the self-adjoint realizations of −d2/dx2 + µ along the
usual lines (see for example [10]), we need Green’s identity. Fix N > 0 and let

D(TN ) = {f ∈ L2(0, N) : f,Af ∈ AC(0, N), (Af)′ ∈ L2(0, N)},
TNf = −(Af)′.

By Proposition 2.1 and the remark following its proof (and also an analogous version
for x = N instead of x = 0), we automatically have that f,Af ∈ AC[0, N ] for
f ∈ D(TN ). For f ∈ D(TN ), we also fix a particular representative of f ′ ∈ L1(0, N)
by

f ′(x) := (Af)(x) +
∫

[0,x]

f(t) dµ(t) (0 ≤ x ≤ N);(2.2)

here, we take the unique continuous representative of Af .

Theorem 2.2 (Green’s identity). Suppose that f, g ∈ D(TN ). Then

〈f, TNg〉 − 〈TNf, g〉 =
(
f ′(x)g(x)− f(x)g′(x)

)∣∣∣x=N

x=0
.

Proof. Integration by parts shows that

〈f, TNg〉 − 〈TNf, g〉 =
(

(Af)(x)g(x)− f(x)(Ag)(x)
)∣∣∣x=N

x=0

+
∫ N

0

(
f ′(x)(Ag)(x)− (Af)(x)g′(x)

)
dx.

In the integral, we plug in Af , Ag from (2.1) and use Fubini’s theorem:∫ N

0

(
f ′(Ag)− (Af)g′

)
dx =

∫ N

0

dx

∫
[0,x]

dµ(t)
(
f(t)g′(x)− f ′(x)g(t)

)
=
∫

[0,N ]

dµ(t)
∫ N

t

dx
(
f(t)g′(x)− f ′(x)g(t)

)
= g(N)

∫
[0,N ]

f(t) dµ(t)− f(N)
∫

[0,N ]

g(t) dµ(t)

Since (Af)(0)g(0)− f(0)(Ag)(0) = f ′(0)g(0)− f(0)g′(0), the asserted identity now
follows.
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The theory of self-adjoint extensions depends on Green’s identity, but not on the
particular form of the differential expression itself, so we have the same theory
here as in the classical case (where dµ(x) = V (x) dx). For a detailed exposition
of this theory, see [10]. TN is self-adjoint on a domain D ⊂ D(TN ) if D(TN )/D

is two-dimensional and the Lagrange form L(f, g) =
(
f ′(x)g(x)− f(x)g′(x)

)∣∣∣x=N

x=0
vanishes on D. These domains D can be described in terms of boundary conditions.
Here, we are interested in separated boundary conditions, that is, we require that
the contributions from x = 0 and x = N vanish separately on D. An elementary
argument shows that then the admissable boundary conditions are precisely given
by

f(0) cosα+ f ′(0) sinα = 0, f(N) cosβ + f ′(N) sinβ = 0,(2.3)

with α, β ∈ [0, π). Here, f(0) and f(N) are well defined because f ∈ AC[0, N ], and
f ′(0) and f ′(N) are determined from (2.2).

Now observe that the operators just defined are independent of µ({0}). Indeed, if
f ∈ D(TN ), the values of f(0) and f ′(0) do not change if we vary µ({0}). However,
this does not necessarily mean that one should dismiss µ({0}) and view µ as a
measure on (0, N). Rather, we can make good use of µ({0}) in the following way:
By the observation made at the end of the proof of Theorem 2.2, the boundary
conditions at x = 0 may also be written in the form f(0) cos γ + (Af)(0) sin γ = 0,
where γ varies over [0, π). Let us fix the boundary condition (Af)(0) = 0. Since
(Af)(0) = f ′(0)−µ({0})f(0), we now get all boundary conditions except Dirichlet
boundary conditions (f(0) = 0) by adjusting µ({0}). Dirichlet boundary conditions
play a special role for other reasons as well. So from now on, we work with the
boundary conditions

(Af)(0) = 0, f(N) cosβ + f ′(N) sinβ = 0.(2.4)

Of course, this is only a minor detail, but we will find it very convenient to use
(2.4) and vary µ({0}) rather than use (2.3) and vary α (α 6= 0).

Next, we study the solutions of the equation −f ′′ + µf = zf + g. Clearly, this
needs to be interpreted properly. The following definition suggests itself.

Definition 2.1. Let g ∈ L1(0, N), z ∈ C. We say that a function f : (0, N) → C

solves the equation

−f ′′ + µf = zf + g(2.5)

on (0, N) if f,Af ∈ AC(0, N) and −(Af)′ = zf+g almost everywhere (with respect
to Lebesgue measure) on (0, N).

We have the usual existence and uniqueness results for the initial value problems
associated with (2.5).

Theorem 2.3. Let g ∈ L1(0, N), z ∈ C and c, c′ ∈ C. Then the equation (2.5) has
a unique continuous solution on [0, N ] such that f(0) = c, (Af)(0) = c′. Moreover,
f(x, z) is entire in z for every fixed x ∈ [0, N ].

Proposition 2.1 and the remark following its proof show that if f solves (2.5) on
(0, N), then in fact f,Af ∈ AC[0, N ].

Sketch of proof. The proof is essentially the same as the one for differential equa-
tions (see, e.g., [4, Chapter 1]), so we only sketch the proof.
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By integrating twice and using Fubini’s theorem, we see that (2.5) together with
the initial conditions f(0) = c, (Af)(0) = c′ is equivalent to the integral equation

f(x) = c+ c′x+
∫

[0,x]

(x− t)f(t)(dµ(t)− z dt)−
∫ x

0

(x− t)g(t) dt.(2.6)

Here, we seek continuous solutions f . If such an f solves (2.6), then f,Af are
automatically absolutely continuous.

The right-hand side of (2.6) defines a contractive mapping on C[0, η], provided
η > 0 is chosen sufficiently small. This yields existence and uniqueness on the
interval [0, η], and this argument may be repeated (with η independent of the
left endpoint) to obtain existence and uniqueness on all of [0, N ]. Holomorphic
dependence on z also follows from this method.

We believe that the above interpretation of −f ′′ + µf = zf + g is natural; this is
also confirmed by the following fact.

Theorem 2.4. If the function f solves (2.5) in the sense of Definition 2.1 on
(0, N), then

−f ′′ + fµ = zf + g

in the sense of distributions on (0, N).

Proof. We must show that the distributional derivative of the function F (x) :=∫
[0,x]

f(t) dµ(t) is equal to the measure F ′ = fµ. Indeed, it follows from this fact
that (Af)′ = f ′′ − fµ (distributional derivatives), so the claim holds.

Let ϕ ∈ C∞0 (0, N) be a test function. By the definition of the distributional
derivative,

(F ′, ϕ) = −(F,ϕ′) = −
∫ N

0

dxϕ′(x)
∫

[0,x]

f(t) dµ(t)

= −
∫

[0,N ]

f(t) dµ(t)
∫ N

t

ϕ′(x) dx =
∫

(0,N)

ϕ(t)f(t) dµ(t) = (fµ, ϕ),

as desired.

We also see from the preceding result and its proof that f ′′ = (Af)′+fµ is a measure
if f solves an equation of the form (2.5). In particular, this is the case for f ∈ D(T )
or f ∈ D(TN ). So, f ′ is then of bounded variation, with jumps precisely at the
discrete points of the measure fµ. The one-sided limits f ′(x±) := limt→x± f

′(t)
exist everywhere. The choice (2.2) (which we also use if f solves (2.5)) implies that
f ′(x+) = f ′(x), and thus f ′(x)− f ′(x−) = f(x)µ({x}).

With this notation, we also have that (Af)(0) = f ′(0−). This remark throws
additional light on our discussion above of boundary conditions at x = 0.

If f, g are solutions of the homogenous equation −y′′ + µy = zy, then their
Wronskian is defined as W (f, g) = f(x)g′(x)− f ′(x)g(x).

Proposition 2.5. The Wronskian of two solutions of the same equation is inde-
pendent of x.
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Proof. This follows from the following computation:

0 =
∫ N

0

(f(x)(Ag)′(x)− (Af)′(x)g(x)) dx

= (f(x)(Ag)(x)− (Af)(x)g(x))
∣∣x=N

x=0
+
∫ N

0

((Af)(x)g′(x)− f ′(x)(Ag)(x)) dx

= W (N)−W (0)− f(N)
∫

[0,N ]

g(t) dµ(t) + g(N)
∫

[0,N ]

f(t) dµ(t)

+
∫ N

0

dx

∫
[0,x]

dµ(t) (f ′(x)g(t)− f(t)g′(x))

= W (N)−W (0)− f(N)
∫

[0,N ]

g(t) dµ(t) + g(N)
∫

[0,N ]

f(t) dµ(t)

+
∫

[0,N ]

dµ(t)
∫ N

t

dx (f ′(x)g(t)− f(t)g′(x))

= W (N)−W (0)

Finally, we introduce the notation u(x, z) for the solution u of −u′′ + µu = zu
with the initial values u(0) = 1, (Au)(0) = 0. Note that u satisfies the boundary
condition at x = 0. This solution u will become important in the following sections.

3. Spectral representation

Given the material from the preceding section, the theory of the spectral rep-
resentation of the operators associated with −d2/dx2 + µ can be developed as in
the classical case where µ is absolutely continuous. We will therefore just compile
some basic results and say relatively little about the proofs, which are completely
analogous to the classical ones (see [4, 10]).

The operators on L2(0, N) have purely discrete spectrum. This follows from the
fact that the resolvent is a compact operator, and this, in turn, follows from an
explicit formula for the integral kernel of the resolvent in terms of the solutions of
−u′′ + µu = zu.

A spectral representation is thus obtained by expanding in eigenfunctions. Since
these eigenfunctions must be multiples of the solutions u(x, z) introduced at the
end of Sect. 2, we can proceed as follows. Define

(Uf)(E) =
∫
u(x,E)f(x) dx.(3.1)

Then, by the above remarks, U maps the original Hilbert space L2(0, N) unitarily
onto L2(R, dρ(β)

N ), where

ρ
(β)
N =

∑ δE
‖u(·, E)‖2

.

The sum is over the eigenvalues E (which depend on N and the boundary condition
β at x = N) and δE denotes the Dirac measure at E, so δE({E}) = 1, δE(R\{E}) =
0. The denominator is necessary because the u’s are not normalized.

For operators on the half-axis (0,∞), the situation is considerably more compli-
cated, because the spectrum need not be discrete. However, as already explained,
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one may proceed exactly as in the case of a potential (dµ(x) = V (x) dx). There is
the distinction between the limit point and limit circle case at infinity. In the latter
case, one needs a boundary condition at infinity to obtain self-adjoint operators.
In either case, one can define a Titchmarsh-Weyl m function in the usual way. The
measure ρ from the Herglotz representation of this m function is a spectral measure
in the sense that U from (3.1) still maps L2(0,∞) unitarily onto L2(R, dρ). More-
over, the transformed operator UHU∗ is multiplication by the variable in L2(R, dρ),
but this will be less important for us.

It is, of course, no coincidence that these well known methods carry over to
Schrödinger operators with measures. Rather, the treatment of [4, Chapter 9] does
not depend on the precise form of the underlying differential equation, but only on
Green’s identity (see Theorem 2.2).

4. de Branges spaces

In this section, we want to follow [9] and use de Branges spaces as a tool in the
spectral analysis of Schrödinger operators. For the definition and the properties of
de Branges functions and spaces we refer the reader to [5, 9].

We fix N > 0 and, as in [9], set EN (z) := u(N, z) + iu′(N, z). Here, u still is the
solution defined at the end of Sect. 2.

Proposition 4.1. The function EN is a de Branges function.

Proof. It is clear that EN is entire, so it remains to show that |EN (z)| > |EN (z)|
for all z ∈ C+ = {z ∈ C : Im z > 0}. Let ζ, z ∈ C. Green’s identity (Theorem 2.2),
applied with f = u(·, z), g = u(·, ζ) gives

u(N, z)u′(N, ζ)− u′(N, z)u(N, ζ)
z − ζ

=
∫ N

0

u(N, z)u(x, ζ) dx.(4.1)

From the integral equation satisfied by u(x, z) and the uniqueness of the solution
we get u(x, z) = u(x, z). Therefore the left-hand side of (4.1) is equal to

EN (z)EN (ζ)− EN (z)EN (ζ)
2i(z − ζ)

.

Hence for z = ζ ∈ C+ we have that |EN (z)| > |EN (z)|, as required.

Given a de Branges function E, one can form the de Branges space B(E) based
on E. One possible definition is given by

B(E) = {F : C→ C : F entire, F/E, F#/E ∈ H2}.

Here, F#(z) = F (z), and H2 is the Hardy space on the upper half plane, that
is, f ∈ H2 precisely if f is (defined and) holomorphic on the upper half plane
and supy>0

∫∞
−∞ |f(x + iy)|2 dx < ∞. B(E) is a Hilbert space with the scalar

product [F,G] = (1/π)
∫
R
FG/|E|2 dλ. These spaces B(E) may be used in the

spectral representation of Schrödinger operators. We will write B(EN ) =: SN (S
for Schrödinger). Set

V : SN −→ L2(R, dρ(β)
N ), V F = F

∣∣
R
.

By using the arguments from [9, Sect. 3], we conclude that V is unitary. So we may
replace the space L2(R, dρ(β)

N ) in the spectral representation by the de Branges
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space SN . We get an induced unitary map U : L2(0, N) → SN (which we still
denote by U). It is given by

(Uf)(z) =
∫
u(x, z)f(x) dx.

In particular,

SN =

{
F (z) =

∫ N

0

u(x, z)f(x) dx : f ∈ L2(0, N)

}
.

Finally, de Branges spaces have reproducing kernels Jz (so [Jz, F ] = F (z) for all
F ∈ B(E)). In the case of SN , they are given by

Jz(ζ) =
∫ N

0

u(x, z)u(x, ζ) dx.

The function u′(x, z) has jumps at the discrete points of u(x, z) dµ(x). More pre-
cisely, as observed in Sect. 2, we have that u′(x, z)−u′(x−, z) = u(x, z)µ({x}). So it
would have been equally natural to work with ẼN (z) = u(N, z)+ iu′(N−, z). How-
ever, this new de Branges function leads to the same de Branges space: B(EN ) =
B(ẼN ). This follows at once from [9, Theorem 7.2] because (using the notation
from that reference) Ã(z) = A(z), B̃(z) = B(z) − µ({N})A(z). It is also quite
clear form another point of view because replacing u′(N, z) by u′(N−, z) amounts
to a change of boundary conditions at x = N , but the de Branges space SN is
independent of this boundary condition.

As in [9], we will now describe the spaces SN in more detail. We prepare for this
with two lemmas which describe the large z asymptotics of u(N, z) and u′(N, z).

Lemma 4.2. Write z = k2. Then u satisfies the integral equation

u(x, z) = cos kx+
1
k

∫
[0,x]

u(t, z) sin k(x− t) dµ(t).(4.2)

Note that only even functions of k occur, so there is no problem with the fact
that there are two solutions to z = k2 if z 6= 0. Moreover, these functions are also
entire, so everything makes sense for z = k = 0 as well.

Proof. Fix z = k2 6= 0. For k = 0, the following calculation also works but it must
be slightly modified. From the equation statisfied by u we get

−
∫ x

0

(Au)′(t) sin k(x− t) dt = k2

∫ x

0

u(t, z) sin k(x− t) dt.

Integrating the first term by parts and using Fubini’s theorem, we get

− ku(x) + k cos kx+ k2

∫ x

0

u(t) sin k(x− t) dt+
∫

[0,x]

u(t) sin k(x− t) dµ(t)

= k2

∫ x

0

u(t) sin k(x− t) dt,

which is the desired equation
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Lemma 4.3. Write z = k2. Then, for large |k|, we have that

|u(x, z)− cos kx| ≤ CN
|k|

exp(|Im k|x),

|u′(x, z) + (1/k) sin kx| ≤ CN exp(|Im k|x).

These estimates hold uniformly in x ∈ [0, N ].

Proof. Write k = r + it and let f(x) := e−|t|xu(x, z). Then from Lemma 4.2, we
get

M ≡ sup
x∈[0,N ]

|f(x)| ≤ 1 +
1
|k|
|µ|([0, N ])M.

Hence M ≤ 2, say, for large enough k. By using this estimate in (4.2) again, we
get the desired estimate, with CN = 2|µ|([0, N ]).

To prove the estimate on u′, note that Lemma 4.2 implies that

u′(x, z) = −k sin kx−
∫

[0,x]

u(t, z) cos k(x− t) dµ(t).

Indeed, the right-hand side is the distributional derivative of the right-hand side of
(4.2) and it is also the correct representative because it is right continuous. The
asserted estimate on u′ now follows immediately.

Theorem 4.4. As a set, the space SN is given by

SN =

{
F (z) =

∫ N

0

f(t) cos
√
zt dt : f ∈ L2(0, N)

}
.

This is the generalization of [9, Theorem 4.1], and, given Lemma 4.3, it has the
same proof.

5. The direct spectral theorem

It remains to analyze the possible scalar products on the de Branges spaces com-
ing from generalized Schrödinger equations. To this end, we introduce a function
φ that describes these scalar products and may thus be thought of as representing
the spectral data.

We need some notation. We write BV (−2N, 2N) for the set of real valued
functions on (−2N, 2N) that are of bounded variation. Given an even function
φ ∈ BV (−2N, 2N), we set

K(s, t) :=
1
2

(φ(s− t) + φ(s+ t)) .

Define the integral operator Kφ on L2(0, N) by

(Kφf) (t) :=
∫ N

0

K(t, s)f(s) ds.

Then Kφ is a self-adjoint Hilbert-Schmidt operator. For the proof of the direct
spectral theorem we will need an asymptotic formula for the Titchmarsh-Weyl
m function. We consider the problem on the half line (0,∞) with the modified
measure µN = χ[0,N ]µ. The m function of this problem (with boundary condition
(Au)(0) = 0) will be denoted by mN , and m0 will be the m function for µ = 0, that
is, m0(z) = (−z)1/2, where the square root is determined by the requirement that
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Im m(z) > 0 for z ∈ C+. If z = k2 with Im k > 0 and f is the solution of −f ′′ +
µNf = k2f with f(x, k) = eikx for x > N , then mN (k2) = −f(0, k)/(Af)(0, k).

Finally, we introduce MN (k) = mN (k2). The functions mN , m0 (originally
defined on C+) may be holomorphically continued to C\ (−∞, 0], and MN extends
to a meromorphic function on C. In the following lemma, we work with these
extensions. We refer the reader to [9] for a more careful discussion of these issues.

Lemma 5.1. a) The limit limk→0 kMN (k) exists.
b) For Im k ≥ 0, k /∈ (−∞, 0], we have

mN (k2)−m0(k2) =
1
k2

∫
[0,N ]

e2ikx dµ(x) +O(|k|−3).

Proof. Part a) is proved as in [9]. We use the constancy of the Wronskian estab-
lished in Proposition 2.5.

To prove part b), we also proceed as in the proof of [9, Lemma 4.3]. We claim
that g(x, k) ≡ f(x, k)e−ikx is the unique solution of the integral equation

g(x, k) = 1 +
1

2ik

∫
(x,N ]

(
e2ik(t−x) − 1

)
g(t, k) dµ(t).(5.1)

To show this, let I be the integral on the right-hand side. We may write this integral
in the form

I =
∫

(x,N ]

dµ(t) g(t, k)
∫ t

x

ds e2ik(t−s) =
∫ N

x

ds

∫
(s,N ]

dµ(t) g(t, k)e2ik(t−s).

This last expression shows that I and hence also the solution g of (5.1) is absolutely
continuous and I ′ = g′ = −

∫
(x,N ]

g(t, k)e2ik(t−x) dµ(t). Note that it is the right
choice to take the interval open at x because this makes g′ right continuous, as it
should be. As for f = geikx, we thus have that

(Af)(x) = ikeikx −
∫

[0,N ]

ω(x, t)g(t, k) dµ(t),(5.2)

ω(x, t) :=

{
0 0 ≤ t ≤ x
(1/2)

(
eik(2t−x) + eikx

)
x < t ≤ N

.

Since ∂ω/∂x is uniformly bounded, we obtain

(Af)′(x) = −k2eikx −
∫

(x,N ]

∂ω

∂x
g(t, k) dµ(t) = −k2f(x, k),

so f solves −f ′′ + µf = k2f , and clearly f(x) = eikx for x > N .
Now given (5.1), we can complete the proof as in [9]. First of all, (5.1) implies

that ‖g‖∞ ≤ 2 if Im k ≥ 0 and |k| ≥ 2|µ|([0, N ]). Hence g(x, k) = 1 +O(|k|−1) for
these k. Eq. (5.2) now shows that

(Af)(0) = ik − µ({0})g(0)− 1
2

∫
(0,N ]

(
e2ikt + 1

)
g(t) dµ(t)

= ik − µ({0})− 1
2

∫
(0,N ]

(
e2ikt + 1

)
dµ(t) +O(|k|−1).
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Similarly,

f(0) = g(0) = 1 +
1

2ik

∫
(0,N ]

(
e2ikt − 1

)
dµ(t) +O(|k|−2).

The asserted asymptotic formula for mN = −f(0, k)/(Af)(0, k) follows by combin-
ing these equations.

The next result gives restrictions on the scalars products on de Branges spaces
coming from a generalized Schrödinger equation.

Theorem 5.2. There is an even function φ ∈ BV (−2N, 2N) with φ(0) = −µ({0}),
such that for every F ∈ SN ,

‖F‖2SN = 〈f, (1 +Kφ)f〉L2(0,N).

Here f is related to F as in Theorem 4.4.

Note that since φ is even, it is continuous at x = 0.
We will not discuss the details of the proof here. One uses the same method as

in the proof of [9, Theorem 4.2], with Lemma 5.1 as an important input. So the
sought function φ is defined formally as

φ(x) =
∫

cos
√
λx d(ρN − ρ0)(λ),

where ρN and ρ0 are the spectral measures of the half line problems with µN ≡
χ[0,N ]µ and zero potential, respectively. More precisely, the integral over (−∞, 0]
may be evaluated directly (it is a finite sum), and the integral over (0,∞) is defined
as distribution. One then shows by analyzing the Fourier transform with the help
of Lemma 5.1b) that this distribution is in fact a function of bounded variation.

As in [9], we have the formula

mN (−y2)−m0(−y2) =
1
y

∫ ∞
0

φ(t)e−yt dt,

which is valid for sufficiently large y > 0. (The integral makes sense because the
method of [9] gives a function φ defined on all of R.) Fubini’s theorem thus shows
that

mN (−y2)−m0(−y2) =
φ(0)
y2

+
1
y2

∫
(0,∞)

e−ys dφ(s) =
φ(0)
y2

+ o(y−2)

as y → ∞. Comparison with Lemma 5.1 now shows that φ(0) = −µ({0}), as
claimed.

6. The inverse spectral theorem

In Theorem 5.2, we associated to each generalized Schrödinger equation a φ
function that determines the scalar product on the corresponding de Branges spaces.
Our next goal is to prove the converse: Every function φ having the properties stated
in Theorem 5.2 comes from a generalized Schrödinger equation.

Let

ΦN := {φ ∈ BV (−2N, 2N) : φ even, 1 +Kφ > 0}

be the set of functions that could in principle be a φ function in the sense of Theorem
5.2. In the last condition, we require that 1+Kφ be positive definite as an operator
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on L2(0, N). This clearly is a necessary condition on φ if 〈f, (1 +Kφ)f〉 is to define
a norm.

Our principal result in this section states that indeed every φ ∈ ΦN occurs as the
φ function (in the sense of Theorem 5.2) of some signed Borel measure µ on [0, N).
We exclude the point x = N here because we have already seen that µ({N}) has
no influence on the de Branges space SN .

Theorem 6.1. For every φ ∈ ΦN , there is a signed Borel measure µ on [0, N)
such that the norm on the de Branges space SN associated with −d2/dx2 + µ on
(0, N) is given by

‖F‖2SN = 〈f, (1 +Kφ)f〉L2(0,N),

where F (z) =
∫
f(t) cos

√
zt dt.

The first impression is that the method of [9], suitably extended, should also
suffice to prove this result. However, we have not been able to make this approach
work. More specifically, we have not succeeded in proving the needed analogs of
the smoothness results from [9, Sect. 14]. Rather, we will use an approximation
argument that allows us to circumvent these difficulties.

Before proving Theorem 6.1, we note that we have uniqueness in both directions
of the correspondence µ ↔ φ. This will be used in the proof of Theorem 6.1; of
course, it is also of independent interest.

Theorem 6.2. a) If a (finite, signed) Borel measure µ on [0, N) is given, the
φ ∈ ΦN from Theorem 5.2 is unique.

b) If φ ∈ ΦN is given, the µ from Theorem 6.1 is unique.

This is proved in the same way as the corresponding result (Theorem 5.2) from
[9]. Then, in the proof of part b), one now needs the fact that u(x, z) for x ∈ [0, N ],
z ∈ C determines µ on [0, N). This indeed holds because uµ = u′′ + zu and u(·, z)
has no zeros for z ∈ C \ R.

Proof of Theorem 6.1. For absolutely continuous φ, this is proved in [9]. In fact,
this is not literally true, because in [9], it is assumed that φ(0) = 0, but the
extension to general values of φ(0) (and thus to general boundary conditions) is
rather straightforward. We will now approximate the given φ ∈ ΦN by smooth
functions φn ∈ ΦN . More precisely, we choose the φn ∈ C∞0 (−2N, 2N) so that
supn ‖φ′n‖L1(−2N,2N) < ∞ and φ′n → φ′ in the w∗-topology of the space of Borel
measures on (−2N, 2N). Recall that φ′, the distributional derivative of φ, is a
measure because φ itself is of bounded variation. In the sequel, we will also denote
this measure by ν = φ′.

To construct a sequence φ′n with the above properties, we can proceed as follows.
Fix ψ ∈ C∞0 (0, 1) with

∫
ψ = 1. For n ∈ N (typically large), subdivide (−2N, 2N)

into 2n subintervals of length ` = 2N/2n. If I is such a subinterval, with endpoints
a and b, say, define φ′n on I by

φ′n(x) =
ν(I)
`

ψ

(
x− a
`

)
.

Then φ′n ∈ C∞0 (−2N, 2N), these functions are automatically odd, and∫
f(x)φ′n(x) dx→

∫
f(x) dν(x)
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as n → ∞ for all f ∈ C0(−2N, 2N); in other words, φ′n → ν in the weak ∗-
topology. Moreover,

∫
I
|φ′n| ≤ |ν(I)|

∫
|ψ|, hence ‖φ′n‖L1(−2N,2N) .

∑
I |ν(I)|.

Since
∑
I |ν(I)| ≤ |ν|((−2N, 2N)), the sequence φ′n is bounded in L1(−2N, 2N).

The functions φn are still only determined up to a constant. We make the obvious
choice, namely, we require that φn(0) = φ(0). Because of the weak ∗-convergence
and the norm boundedness in L1 of the derivatives, we have that the functions φn(x)
converge boundedly almost everywhere to φ(x). More precisely, we will certainly
have convergence whenever φ(x) = φ(x−), or, equivalently, ν({x}) = 0.

By dominated convergence this implies that the operators Kφn converge to Kφ
in Hilbert-Schmidt norm. In particular, they converge in operator norm and con-
sequently, 1 +Kφn > 0 for sufficiently large n. Hence φn ∈ ΦN for these n.

By [9, Theorem 5.1] (more precisely, by the extension of this result to arbi-
trary non-Dirichlet boundary conditions), there are potentials Vn such that the
de Branges spaces associated to −d2/dx2 + Vn(x) are described by the functions
φn. If we again describe the boundary condition at x = 0 by µ({0}), then we
actually obtain the measures µn = −φ(0)δ0 + Vn.

More explicitly, the potential Vn is given by

Vn(x) =
p′′n(x, x)
pn(x, x)

,(6.1)

where pn is the solution of the integral equation

pn(x, t) +
∫ x

0

Kφn(t, s)pn(x, s) ds = gn(t)(6.2)

(see [9, Sect. 18]. In fact, there are two such equations, corresponding to gn ≡ 1
and g′′n = φn, gn(0) = 0, g′n(0) = 1. With either choice of gn, (6.1) holds. Moreover,
the zeros of the solutions pn(x, x) form a discrete set, and it does not happen that
both solutions have a zero at the same point. So for at least one choice of pn, (6.1)
is applicable.

We now want to show that (Vn) is bounded in L1(0, N). By the Banach-Alaoglu
theorem, this will allow us to extract a subsequence (µnk) that converges to some
measure µ in the w∗-topology. We will then conclude the proof by showing that φ
is the φ-function of −d2/dx2 + µ.

To prove that supn ‖Vn‖L1(0,N) <∞ it suffices to show that supn ‖p′′n‖L1(0,N) <

∞ because of (6.1) and the remarks following (6.2). Denote by K(x)
n := K(x)

φn
the

integral operator on L2(0, x) generated by the kernel

Kφn(t, s) =
1
2

(φn(t− s) + φn(t+ s)) .

We will consider K(x)
n as an operator on C[0, x] and on L1(0, x). On both of these

spaces, we have convergence in operator norm to the corresponding limit operator
as n → ∞. For instance, to compute the B(C) norm of K(x)

n − K(x), we must
analyze expressions of the form

sup
‖f‖∞=1

sup
0≤t≤x

∣∣∣∣∫ x

0

(φn(t− s)− φ(t− s)) f(s) ds
∣∣∣∣

≤ sup
0≤t≤x

∫ x

0

|φn(t− s)− φ(t− s)| ds ≤
∫ x

−x
|φn(u)− φ(u)| du.
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So we can indeed estimate uniformly in x ∈ [0, N ]:

‖K(x)
n −K(x)‖ ≤ ‖φn − φ‖L1(−2N,2N).

This estimate also holds for the operator norm in L1(0, x).
Since inversion is a continuous operation, 1 + K(x)

n is boundedly invertible for
sufficiently large n in C[0, x] and in L1(0, x), and the operator norms of the inverses
are uniformly bounded in n.

Finally, note that ‖dkgn/dxk‖∞ also remains bounded in n for k = 0, 1, 2 and
either choice of gn.

Since (1 + K(x)
n )pn(x, ·) = gn, we obtain as a first consequence of the above

observations that

|pn(x, t)| ≤ C (0 ≤ t ≤ x ≤ N,n ≥ n0).

Moreover, since px,n := ∂pn/∂x satisfies

px,n = −pn(x, x)(1 +K(x)
n )−1Kn(·, x),

this function is also uniformly bounded. The other first order partial derivative
satisfies

pt,n(x, t) = −
∫ x

0

Kt,n(t, s)pn(x, s) ds+ g′n(t).

Hence

sup
0≤t≤x

|pt,n(x, t)| . ‖φ′n‖L1(−2N,2N) + ‖g′n‖∞,

and since ‖φ′n‖L1(−2N,2N) also remains bounded, we get a uniform bound on pt,n
as well.

The second order derivatives are not necessarily bounded pointwise, so here we
work with L1 bounds. Apart from this, the reasoning is similar to the arguments
used above. By differentiating (6.2) twice with respect to x and solving for pxx,n,
we obtain

pxx,n(x, t) =(
1 +K(x)

n

)−1 (
−Kx,n(t, x)pn(x, x)−Kn(t, x) (2px,n(x, s) + ps,n(x, s))

∣∣
s=x

)
.

The expression in parantheses on the right-hand side remains bounded in L1(0, x),
uniformly in x ∈ [0, N ], as n varies. Hence supn,x ‖pxx,n(x, ·)‖L1(0,x) <∞.

Now we are ready to bound p′′n(x, x). To simplify the notation, we will drop the
index n in this final step. By (6.2),

p′(x, x) = (px(x, t) + pt(x, t))
∣∣
t=x

= −K(x, x)p(x, x)−
∫ x

0

K(x, s)px(x, s) ds+ g′(x)−
∫ x

0

Kx(x, s)p(x, s) ds.

We differentiate one more time. This gives

p′′(x, x) = −φ′(2x)p(x, x)−K(x, x)p′(x, x) + g′′(x)−K(x, x)px(x, s)
∣∣
s=x

− 2
∫ x

0

Kx(x, s)px(x, s) ds−
∫ x

0

K(x, s)pxx(x, s) ds

−Kx(x, s)
∣∣
s=x
· p(x, x)−

∫ x

0

Kxx(x, s)p(x, s) ds.
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Our previous results show that everything on the right-hand side except possibly
the last term is bounded in L1. In the last term, the problem is the occurence of
φ′′n; we do not have control on these functions. However, since Kxx = Kss, we can
integrate by parts:∫ x

0

Kxx(x, s)p(x, s) ds =
∫ x

0

Kss(x, s)p(x, s) ds

= Ks(x, s)
∣∣
s=x
· p(x, x)−

∫ x

0

Ks(x, s)ps(x, s) ds

So this term is bounded, too. In conclusion, we have that supn ‖p′′n(x, x)‖L1(0,N) <
∞, as we wanted to show.

As explained above, we may now assume, by passing to a subsequence if neces-
sary (we will later see that this is actually not necessary), that Vn(x) dx − φ(0)δ0
converges to a (finite, signed) Borel measure µ on [0, N ] in the weak ∗-topology.
Since supn ‖Vn‖L1(0,x) → 0 as x→ 0+, the limit measure must also satisfy µ({0}) =
−φ(0).

The final step in the proof consists of showing that φ is the φ function of
−d2/dx2 + µ. We will use the following result.

Lemma 6.3. Let µn be a bounded sequence of measures (so sup |µn|([0, N ]) <∞)
that converges to the measure µ in the weak ∗-topology. Let ρn and ρ be the spectral
measures of −d2/dx2 +µn and −d2/dx2 +µ, respectively, on [0, N ], with boundary
conditions (Af)(0) = 0, f ′(N) = 0. Then (1 + λ2)−1 dρn(λ)→ (1 + λ2)−1 dρ(λ) in
the weak ∗-topology.

Here, the weight (1 + λ2)−1 is introduced to get finite measures. Assuming
Lemma 6.3, we can complete the proof of Theorem 6.1 as follows. We apply the
Lemma with µn = Vn(x) dx − φ(0)δ0. For f ∈ C∞0 (0, N), the transform F (λ) =∫
f(x) cos

√
λx dx goes to zero rapidly as λ → ∞. Moreover, since µn is bounded,

there is an E0 ∈ R so that the supports of the ρn’s and ρ are all contained in
(E0,∞). Therefore, we can cut off F (λ) to the left of E0 without changing the
integrals

∫
|F |2 dρn,

∫
|F |2 dρ. So, (1 + λ2)|F |2 is an admissable test function and

thus ∫
R

|F (λ)|2 dρn(λ)→
∫
R

|F (λ)|2 dρ(λ).

On the other hand,
∫
|F |2 dρn = 〈f, (1 +Kφn)f〉 by the identification of L2(R, dρn)

with S
(n)
N (see Sect. 4). Since

〈f, (1 +Kφn)f〉 → 〈f, (1 +Kφ)f〉

and
∫
|F |2 dρ = ‖F‖2SN , the uniqueness of φ (Theorem 6.2b)) together with the fact

that f varies over a dense subset of L2(0, N) now show that φ is the φ function of
−d2/dx2 + µ.

It remains to prove Lemma 6.3. We will prove that the correspondingm functions
converge, mn(z) → m(z), uniformly on compact subsets of C+. As is well known,
this implies weak ∗-convergence of the (renormalized) spectral measures (compare
[6]). The m functions can be computed as follows: m(z) = −f(0, z)/(Af)(0, z),
where f solves −f ′′ + µf = zf and f ′(N, z) = 0, and similarly for mn(z). We
normalize by further requiring that f(N, z) = 1 (a multiplicative constant of course
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drops out anyway when m is computed). Then, in analogy to Lemma 4.2 (compare
also (5.2)), f is the unique solution of the integral equation

f(x, k) = cos k(x−N) +
1
k

∫
(x,N ]

sin k(t− x)f(t, k) dµ(t).(6.3)

Here, z = k2 (since only even functions of k occur, there is no problem with the
choice of the square root), and, of course, the fn’s obey the same equations with µ
replaced by µn. Now we can argue as in the proof of Theorem 2.3. Namely, given
a compact subset K ⊂ C, we pick η > 0 so that

sup
0<s≤η

sup
z∈K

∣∣∣∣ sin ksk

∣∣∣∣ |µ|([0, N ]) < 1.

Then (6.3) shows that f(x, k) remains bounded for x ∈ [N − η,N ] and z ∈ K. But
now a similar argument may be applied to the interval [N − 2η,N − η] etc. so that
f is eventually seen to be uniformly bounded on [0, N ]. Clearly, this argument has
in fact shown that fn is also bounded, uniformly in n. Finally, a slight modification
of the whole analysis shows that fn → f , uniformly in x ∈ [0, N ] and z ∈ K.

Eq. (6.3) implies that

(Af)(0, k) = k sin kN −
∫

[0,N ]

cos ktf(t, k) dµ(t).

Hence we also have that (Afn)(0, k)→ (Af)(0, k) uniformly on compact sets. Since
it is not possible that (Af)(0, z) = 0 for non-real z, it now follows that mn(z) →
m(z) locally uniformly, as desired.
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