
GENERALIZED TODA FLOWS

DARREN C. ONG AND CHRISTIAN REMLING

Abstract. The classical hierarchy of Toda flows can be thought
of as an action of the (abelian) group of polynomials on Jacobi
matrices. We present a generalization of this to the larger groups of
C2 and entire functions, and in this second case, we also introduce
associated cocycles and in fact give center stage to this object.

1. Introduction

A Jacobi matrix is a difference operator of the form

(1.1) (Ju)n = anun+1 + an−1un−1 + bnun.

Here, we assume that an > 0 and bn ∈ R are bounded sequences, and
then J is a bounded self-adjoint operator on `2(Z). The space of all
such Jacobi matrices will be denoted by J . The alternative notation
τu for the difference expression from (1.1) is employed when we want
to apply it to arbitrary sequences u, not necessarily from `2(Z).

Toda flows are global flows on J , and one has one such flow for
each polynomial p. Please see, for example, [2, 3, 9] for textbook style
treatments and [1, 6] for recent work. Or, as advertised in [6], we
can think of the abelian group G = P = R[x] of polynomials (with
pointwise addition as the group operation) acting on the space J of
Jacobi matrices.

The Toda hierarchy is most conveniently constructed using the Lax
equation

(1.2) J̇ = [p(J)a, J ];

here, the anti-symmetric part p(J)a of p(J) is defined via its matrix
representation in terms of the standard unit vectors δn ∈ `2. In other
words, if we write Xjk = 〈δj, Xδk〉 for a bounded self-adjoint operator
X, then (Xa)jk = Xjk for j < k and = −Xjk if j > k, and (Xa)jj = 0.

The time derivative J̇ of J(t) is defined in the obvious way as the limit
of the difference quotients with respect to the operator norm.
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The Lax equation (1.2) defines a global flow [9, Theorem 12.6], and
to define the group action p · J that was mentioned above, we take
the time one map of this flow. This is an action of the abelian group
P because, as is well known, any two Toda flows commute. Notice
also that the right-hand side of (1.2) is linear in p, and, in particular,
multiplying p by a constant amounts to the same as rescaling time.
This means that in terms of the group action, the solution J(t) to (1.2)
with the initial value J(0) = J is given by J(t) = (tp) · J .

This group action has the following fundamental properties, most of
which are classical and very well known: the action p ·J also commutes
with the shift, which sends the coefficients of a Jacobi matrix to their
shifted version (an+1, bn+1). So we in fact have an action of the larger
abelian group G = P×Z, with Z acting by shifts. The action is by uni-
tary conjugation: g ·J = U∗JU for some unitary operator U = U(g, J).
So all spectral properties are preserved (the word isospectral is often
used in this context). In fact, the (generalized) reflection coefficients
are also preserved, and this is a property that has come into focus more
recently [6, 7].

It is very natural to now wonder what would happen here if we con-
sider more general functions f instead of p, and this is the subject
of this paper. Of course, we can define f(J) for general f ∈ L∞ via
the spectral theorem, and this will be a bounded operator. However,
the potential problems start at the next step: the anti-symmetric (or
upper triangular) part of a bounded operator need not be bounded.
This means that (1.2) would need interpretation, and it also makes it
doubtful if this equation can then still define global flows and (every-
where defined) group actions, which is a very convenient property of
the Toda hierarchy, which we would like to keep.

We will approach things in two stages here. In the next section, we
present a very simple recipe how we can work around this issue for
f ∈ C2 and thus obtain global flows and an action of a large group
from (1.2). As expected, f · J can then also be obtained from what we
have already by approximation, as f ·J = lim pn ·J , for polynomials pn
that converge to f in a suitable sense. This in turn means that many
of the properties of the classical flows just carry over automatically.

There are important exceptions to this, though, and this is what we
will discuss in the second part. We do not know if f · J is unitarily
equivalent to J for a general f ∈ C2; this property will not just follow
from approximation, at least not entirely. (It will follow from what we
do in Section 2 that σ(f ·J) = σ(J), and the results of [5] imply that the
absolutely continuous parts of multiplicity 2 are unitarily equivalent.)
One standard argument in the classical setting constructs U by solving
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U̇ = P (t · J)U , but this becomes technically unpleasant if P isn’t
bounded, and the standard results from the literature [8] don’t seem
to apply in any obvious way.

There is a second, different approach to these issues that was ad-
vertised in [6], and this is what we will pursue here: if we have an
associated cocycle that extends the shift cocycle, then unitary equiva-
lence and more will follow. This approach, too, doesn’t seem to work
in complete generality. The natural class of functions f for which the
Toda cocycle can be generalized consists of entire functions f , and this
is what we will discuss in the second part of this note. Our choice of
approach is really very much a matter of taste since for entire func-
tions, the first argument outlined above, via the equation U̇ = PU ,
also works without too much trouble. We hope, however, that the de-
tailed discussion of cocycles in Sections 3, 4 and the appendix will also
further illuminate various aspects of [6].

It appears that this second, more specialized scenario of the group
of entire functions acting on J via generalized Toda flows recommends
itself most for possible future use and investigation because of the ad-
ditional machinery that is available here.

2. The general Lax equation

In this section, we assume that f ∈ C2(R); of course, f(J) only
depends on the restriction of f to the spectrum σ(J) of J . We would
like to consider the evolution equation J̇ = Xf (J), with Xf (J) ≡
[f(J)a, J ]. The existence of a second derivative will later ensure that
X(J) obeys a Lipschitz condition, so that we have the usual Picard
iteration method available.

But first we need to define Xf (J); as pointed out in the introduction,
f(J)a is not guaranteed to be a bounded operator. We completely
bypass this problem by simply interpreting X(J) in terms of its matrix
elements with respect to the standard ONB {δn}n∈Z. In other words,
we define

Xf (J)jk =

{
([f(J)a, J ])jk |j − k| ≤ 1

0 otherwise
;

strictly speaking, this is somewhat formal, but it’s clear how to in-
terpret the formula rigorously: in the commutator f(J)aJ − Jf(J)a,
just multiply the infinite matrices in both terms according to the usual
row times column recipe. Since J is tridiagonal, this is well defined.
Then we take the (j, k)-element of the resulting infinite matrix. Also,
we have introduced the property of Xf of being tridiagonal simply by
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decree here; in the classical setting (f = p a polynomial), this follows
from the structure of X.

It is clear that Xf (J) is formally symmetric, that is, Xjk = Xkj, and
has bounded matrix elements, so in fact defines a self-adjoint bounded
tridiagonal operator on `2(Z) (it’s not quite a Jacobi matrix itself be-
cause we don’t know if the off-diagonal elements are positive).

We now refer to the theory of operator differentiable functions to
control the dependence of Xf (J) on J . From [4, Corollary 3.3] we
obtain that

(2.1) ‖f(J)− f(J ′)‖ ≤ C‖J − J ′‖, ‖J‖, ‖J ′‖ ≤ R

and here C = 2
(
‖f‖C[−R,R] + ‖f ′′‖L2(−R,R)

)
would work as the con-

stant, and we have made no attempt to optimize this; see [4] for the
subtleties of these questions. Indeed, the precise form of the constant
or of the conditions imposed on f is not important for us, what matters
is that we now obtain the Lipschitz condition

(2.2) ‖Xf (J)−Xf (J ′)‖ ≤ L‖J − J ′‖, ‖J‖, ‖J ′‖ ≤ R;

again, we can take an L here that only depends on f and R.

Theorem 2.1. The Lax equation J̇ = Xf (J) has a unique global solu-
tion for any initial value J(0) = J .

So we have now defined Toda flows for more general functions f ; as
already discussed above, our preferred viewpoint is to think of this as
an action of the larger group G = C2(R) on J . This of course assumes
that any two flows commute, which we will show below. As above, we
then define f · J as J(1), where J(t) solves J̇ = Xf (J), J(0) = J .

Theorem 2.2. If fn(x)→ f(x) uniformly on |x| ≤ ‖J‖, then fn ·J →
f · J in operator norm.

Proof of Theorems 2.1, 2.2. For the most part, this will be a rather
routine application of standard ODE techniques, except perhaps for
the existence of global solutions, and here will we give an argument
that intertwines Theorems 2.1, 2.2 in a curious way, so we prove them
together. Compare also [9, Section 12.2] for the classical setting.

Write the Lax equation, with initial condition, as an integral equa-
tion (and here we can define the operator valued integral via Riemann
sums)

(2.3) J(t) = J +

∫ t

0

Xf (J(s)) ds,
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and solve this by (Picard) iteration:

J0(t) = J, Jn+1(t) = J +

∫ t

0

Xf (Jn(s)) ds

The Lipschitz condition (2.2) guarantees that this converges locally (in
t) to a solution since the integral operator on the right-hand side of (2.3)
is contractive; this property also gives uniqueness. We obtain a unique
solution on 0 ≤ t ≤ T , where T > 0 only depends on the Lipschitz
constant L that we can achieve in a neighborhood of the initial value.
Or, more specifically, we can say that T > 0 can be chosen to depend
on f and (a bound on) ‖J‖ only.

We have established uniqueness and local existence of solutions, and
we now turn to Theorem 2.2. Let’s compare the solutions Jg(t), Jh(t)
for two different right-hand sides Xg, Xh, but with the same initial
value J ′ at t = 0. Throughout the following argument, we may have
to restrict t to a small interval 0 ≤ t ≤ T , so that we can be sure that
the solutions actually exist there.

Consider the Picard iterates

J0(t) = Jg(t), Jn+1(t) = J ′ +

∫ t

0

Xh(Jn(s)) ds

for Jh, but with the added twist that we start the process not with the
constant function equal to the initial value, but with the comparison
solution Jg(t). Then, since Xf is linear in f ,

J1(t)− J0(t) =

∫ t

0

Xh−g(J0(s)) ds.

Now for a tridiagonal matrix, the operator norm is comparable to the
`∞ norm of the sequence of matrix-elements; more precisely, ‖J‖∞ ≤
‖J‖op ≤ 3‖J‖∞, where by ‖J‖∞, we simply mean max{‖a‖∞, ‖b‖∞},
if we again denote the coefficients of J by a, b.

Thus

‖Xf (J)‖∞ ≤ 4‖f(J)‖‖J‖∞ ≤ 4‖f‖C[−‖J‖,‖J‖]‖J‖∞

(as above, we use the convention that a norm of an operator with no
subscript indicated refers to the operator norm), and it follows that

‖J1(t)− J0(t)‖∞ ≤ 4Rt‖g − h‖C[−R,R], R ≡ sup
0≤s≤T

‖J0(s)‖∞.

Note that R depends only on g and J ′ (and in a moment we will see
that in fact R ≤ ‖J ′‖).
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With this preparation in place, we now run the usual Picard machine
and can easily prove by induction that

‖Jn+1(t)− Jn(t)‖∞ ≤
4R‖g − h‖C[−R,R]

Lh

(Lht)
n+1

(n+ 1)!
;

here, Lh denotes a Lipschitz constant forXh, valid for ‖J‖ ≤ 2‖J ′‖ (and
we can make sure that all Jn(t) satisfy this bound by restricting our
attention to a small enough interval 0 ≤ t ≤ T ). Since Jn(t) → Jh(t)
in operator norm, uniformly on 0 ≤ t ≤ T , and Jg(t) = J0(t), we see
by summing these bounds that

(2.4) ‖Jg(t)− Jh(t)‖∞ ≤
4R

Lh

‖g − h‖C[−R,R](e
Lht − 1).

This now gives us the following variant of Theorem 2.2: if fn → f
uniformly on |x| ≤ 2‖J ′‖, say, with uniformly bounded (in L2) second
derivatives there, then we can take g = f , h = fn in (2.4), and the
Lipschitz constants Lfn will stay bounded, so (tfn) · J ′ → (tf) · J ′, on
an interval 0 ≤ t ≤ T , which depends only on ‖J ′‖ and a uniform
bound on the Lipschitz constants.

Now we return to Theorem 2.1. Given an f ∈ C2(R) and an initial
value J , we approximate by polynomials pn → f on [−2‖J‖, 2‖J‖],
with uniformly bounded second derivatives. Then (tpn) · J → (tf) · J
for 0 ≤ t ≤ T , and here we can take a T > 0 that only depends on f
and ‖J‖. In the classical case, for the polynomial flows, we know that
(tpn) ·J is unitarily equivalent to J ; in particular, the operator norm is
preserved. Thus also ‖(tf) ·J‖ = ‖J‖, and that means that in the first
part of the proof, we can also find a T > 0 that works along the whole
orbit: we solve on 0 ≤ t ≤ T , then take (Tf) ·J as the new initial value
and can now be sure that we can also solve on T ≤ t ≤ 2T etc.

Now that the existence of global solutions is guaranteed and with
the extra information that ‖(tf) · J‖ = ‖J‖, we can return to (2.4)
and obtain the statement of Theorem 2.2 from this. To do this, we
let g, h swap roles, that is, we take g = fn, h = f , and then we don’t
need uniform control on the Lipschitz constants. This works because
we now know that R ≤ ‖J ′‖ satisfies a uniform (in n) bound. �

As an immediate consequence of Theorem 2.2, we obtain that (gen-
eralized) Toda flows commute with each other and the shift. In partic-
ular, it is indeed consistent to speak of an action of the abelian group
G = C2(R)× Z on J .
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Theorem 2.3. The action itself J 7→ f · J is continuous with respect
to the operator norm, and in fact

‖f · J − f · J ′‖∞ ≤ ‖J − J ′‖∞eLf .

This is proved by the same methods: we run a Picard iteration that
we start with J0(t) = (tf) ·J −J +J ′, and we make J ′ the initial value
in the iteration, so Jn(t) → (tf) · J ′. We then use the same estimates
as in the proof of Theorem 2.2. We leave the details to the reader.

3. Cocycles and the zero curvature equation

In this section, we review and expand the perspective on Toda flows
that was proposed in [6]. As in that reference, we introduce the nota-
tion

SL = {T : C→ SL(2,C) : T entire, T (x) ∈ SL(2,R) for x ∈ R}

for the group of matrix functions that our cocycles will take values
in. Recall that given a group action G × X → X on a space X, an
SL-cocycle was defined as a function T : G ×X → SL satisfying the
cocycle identity

(3.1) T (gh;x) = T (g;h · x)T (h;x).

In our context, the most basic example is given by the shift cocycle:
here, G = Z acts on J by shifts, and the cocycle is given by the transfer
matrix

T (1; J) = A(J) ≡
(

z−b1
a1

1
a1

−a1 0

)
,

and then T (n; J) = A((n − 1) · J) · · ·A(J) for n ≥ 0 and T (n; J) =
T (−n;n · J)−1 for n < 0. These latter definitions are forced on us by
the cocycle identity, but of course this is also how one would normally
have defined the transfer matrix if one wants to obtain a matrix that
updates solution vectors Y (n) = (yn+1,−anyn)t, τy = zy, in the sense
that T (n)Y (0) = Y (n). This property of T also makes it clear that the
shift cocycle updates the Titchmarsh-Weyl m functions

m±(z) = ∓ f±(1, z)

a0f±(0, z)
, τf± = zf±, f± ∈ `2(Z±)

along the action:

(3.2) ±m±(n · J) = T (n; J)(±m±(J)),

and here an invertible matrix M = ( a b
c d ) acts on the Riemann sphere

C∞ as a linear fractional transformation, Mw = aw+b
cw+d

.
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As was emphasized in [6], a crucial property of the classical Toda
hierarchy is the existence of an SL-cocycle with the same basic prop-
erties. For each polynomial flow, there is a matrix function B(J),
taking values in traceless entire matrix functions and again real on the
real line, such that if T (t; J) is defined as the solution of

(3.3) Ṫ = B(t · J)T, T (0) = 1,

then T is an SL-cocycle for the action of G = R on J by the corre-
sponding Toda flow (tp) ·J . In fact, much more is true: one obtains, in
this way, a cocycle for the action of the much larger group G = P ×Z,
with again Z acting by shifts [6, Theorem 2.2], and, as in (3.2), this
cocycle updates the m functions along the action:

±m±(g · J) = T (g; J)(±m±(J))

The key here is the existence of a joint cocycle that extends the shift
cocycle. Such a joint cocycle (even if the acting group is just G = R×Z,
corresponding to one flow plus the shift) will automatically update the
m functions correctly [6, Theorem 2.3].

Now we can ask ourselves how such joint cocycles, for an action of
G = R × Z, can arise, and the obvious way to produce them would
be to combine two individual cocycles. The (differentiable) cocycles
for an action of G = R are exactly given by (3.3), in the following
sense: for any choice of a B as above, T will be an SL-cocycle, and,
conversely, if an SL-cocycle is given, then it will satisfy (3.3), with
B(J) = (d/dt)T (t; J)

∣∣
t=0

. Now the key question is: when does such a
cocycle form a joint cocycle for the action of G = R×Z, when combined
with the shift cocycle?

This question has a simple answer: exactly when the zero curvature
equation

(3.4) Ȧ(J) = B(1 · J)A(J)− A(J)B(J), Ȧ ≡ d

dt
A(t · J)

∣∣
t=0
,

holds, and this gives (we believe) a rather transparent interpretation
of this equation.

This was also pointed out in [6], but in somewhat informal language,
so let us make it completely explicit here. Suppose that, as above,
B = B(J) is a continuous matrix function taking values in

sl = {B : C→ C2×2 : B entire, trB = 0, B(x) ∈ R2×2 for x ∈ R};
the continuity requirement refers to the operator norm on J and the
topology of locally uniform convergence on sl. Fix one of the flows
from the general Toda hierarchy; in other words, fix an f ∈ C2(R); it
will then be convenient to use the short-hand notation t · J ≡ (tf) · J
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for this flow. Then B yields an SL-cocycle for this action via (3.3).
In addition to this, we have the shift cocycle for the action of Z. We
are now trying to glue these together to produce a joint cocycle for the
action of G = R × Z. If this works at all, then, by the (anticipated)
cocycle identity, the attempt

(3.5) T (g; J) := T (t;n · J)T (n; J), g = (t, n) ∈ G = R× Z,

is as good as any. Note that on the right-hand side, we are only using
the individual cocycles that we already constructed, so of course this
definition is not circular.

Theorem 3.1. (3.5) defines a cocycle for the action of G = R × Z if
and only if the zero curvature equation (3.4) holds.

Proof. First of all, we claim that we have a cocycle if and only if the
identity

(3.6) T (t; 1 · J)A(J) = A(t · J)T (t; J)

holds for all t ∈ R. Clearly, (3.6) is necessary: it is an immediate
consequence of the cocycle identities for g = (t, 1) = (t, 0)(0, 1) =
(0, 1)(t, 0). Conversely, the cocycle identity (3.1) for g = (s,m), h =
(t, n), and J for the T defined by (3.5) is easily seen to be equivalent
to

(3.7) T (t;m · J ′)T (m; J ′) = T (m; t · J ′)T (t; J ′),

with J ′ = n · J . Now the m = 1 case of this is (3.6), and then (3.7) in
general follows by a straightforward induction on |m|.

The zero curvature equation (3.4) follows at once from (3.6) by taking
the t derivative at t = 0 on both sides and using (3.3). Conversely,
assume now that (3.4) holds. Call the two sides of (3.6) L(t) and R(t),
respectively, and notice that dL/dt = B(t · 1 · J)L and, by (3.3), (3.4),
and since (d/dt)A(t · J) = (d/ds)A(s · t · J)

∣∣
s=0

,

dR

dt
= Ȧ(t · J)T (t; J) + A(t · J)B(t · J)T (t; J) = B(1 · t · J)R.

So L and R solve the same ODE, and since also L(0) = R(0)(= A(J)),
we obtain that L = R, as desired. �

4. Cocycles for generalized Toda flows

The discussion of the previous section suggests the following two step
procedure: (1) extend the matrix functions B = Bp of the classical
Toda hierarchy to (parts of) the general hierarchy; (2) show that these
B satisfy the zero curvature equation.



10 DARREN C. ONG AND CHRISTIAN REMLING

This we will do for the group of functions

O = {f : C→ C : f entire, f(x) ∈ R for x ∈ R}.

For a given J , everything would in fact work the same way if f is only
holomorphic on |z| < R for some R > ‖J‖, though we’d then have to
work with cocycles which are also defined only on this disk |z| < R.
In particular, the conclusions of Theorem 4.3, that f · J is unitarily
equivalent to J and the absolute values of the reflection coefficients are
preserved, are valid in this setting also. We prefer to have SL-cocycles
available and thus do not bother with this generalization here.

We will obtain a cocycle for the action of G = O × Z and then all
the benefits that come with it. Once B has been defined, it will again
be more convenient technically to obtain the desired results from the
classical case by approximation, so this is what we’ll do here. In the
appendix, we show how to derive the zero curvature equation from the
Lax equation for the classical (polynomial) flows, to make our treat-
ment more self-contained and have a detailed proof written up of this
crucial step.

To define B = Bf for f ∈ O, we first of all introduce the (multipli-
cation) operators (or, equivalently, sequences)

g(z; J) =
(
(J − z)−1

)
d
, h(z; J) =

(
2aS(J − z)−1

)
d
− 1;

here, S again denotes the shift operator, and Xd refers to the diagonal
part of a (let’s say: bounded) operator X, again thought of as an
infinite matrix with respect to the standard basis. In other words, Xd

acts by multiplication by the sequence Xnn = 〈δn, Xδn〉.
Note that g, h are holomorphic on |z| > ‖J‖, including z = ∞, and

g(∞) = 0, h(∞) = −1. Thus we have the expansions

(4.1) k(z) =
∑
n≥0

knz
−n, |z| > ‖J‖,

for k = g, h.
For a Laurent series L(z) (about z0 = 0), we denote its power series

part by [L] =
∑

n≥0 Lnz
n. Using this notation, we can now define

B = Bf (J) ∈ sl for f ∈ O, as follows:
(4.2)

B =

(
([fh] + f(J)d − 2(z − b)[fg])1 −2 ([fg])1

2 (a2[fg])0 (2(z − b)[fg]− [fh]− f(J)d)1

)
Here, the indices refer to the n variable of the various multiplication
operators (or sequences), so, for example, ([fg])1 = [fg1], with g1 =
〈δ1, (J − z)−1δ1〉.
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Let’s check that B indeed takes values in sl. First of all, B = B(z)
is entire since fg, fh are holomorphic on |z| > ‖J‖, so the power series
parts [fg], [fh] converge everywhere. Moreover, using the Neumann
series

(4.3) (J − z)−1 = −
∑
n≥0

z−n−1Jn, |z| > ‖J‖

we see that the expansion coefficients of g and h are real, and so are
those of f , by assumption, so B is real on the real line.

Next, comparison with formula (5.1) from [6] and the discussion that
follows (see also [9, Section 12.4]) shows that if f = p is a polynomial,
then (4.2) recovers the B from the classical Toda cocycle. This of
course is the property that motivated our definition in the first place:
(4.2) is a natural extension of these formulae.

Finally, we observe that B = Bf (J) is continuous in f and J , in the
following sense. Introduce the metric

d(J, J ′) =
∑
n∈Z

2−|n| (|an − a′n|+ |bn − b′n|)

on J . Note that if Jn → J in operator norm, then d(Jn, J) → 0 and
also ‖Jn‖ ≤ C, but of course these latter conditions are much weaker.
Suppose now that fn(z) → f(z) locally uniformly and d(Jn, J) → 0,
‖Jn‖ ≤ C. Then Bn(z)→ B(z) locally uniformly, where we have used
the obvious notations Bn ≡ Bfn(Jn), B = Bf (J).

To see this, observe first of all that (4.3) gives us uniform bounds

|gk|, |hk| ≤ Ck

on the coefficients of g, h, which are valid for all ‖J‖ ≤ C. We also
have uniform (in n) bounds on the Taylor coefficients of the fn, from
Cauchy’s estimates, since, by assumption, sup max|z|=R |fn(z)| < ∞
for all R > 0. The coefficients of [fng], [fnh] are obtained as Cauchy
products from those coefficients, so we have uniform bounds on these
as well. This means that to establish the locally uniform convergence
Bn(z)→ B(z), it is enough to verify that the Taylor coefficients (about
z0 = 0) converge. In this form, the claim is clear since the Taylor coef-
ficients of fn(z) converge by assumption and those of g(z; Jn), h(z; Jn)
are also easily seen to converge, by again using the Neumann series.
Moreover, the coefficient sequences a, b are of course also continuous
functions of J .

So we now have a cocycle for each general Toda flow, generated by an
f ∈ O. We denote by T (f ; J) the solution to (3.3), evaluated at t = 1.
The continuity of B = Bf has the following important consequence.
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Lemma 4.1. If fn, f ∈ O and fn(z) → f(z) locally uniformly, then
T (fn; J)→ T (f ; J) locally uniformly.

Proof. From Theorem 2.2 and its proof, we know that (tfn)·J → (tf)·J ,
uniformly on 0 ≤ t ≤ 1, and in operator norm (convergence in d already
would have been enough here). By the continuity properties of B that
were just observed this gives us that Bfn((tfn) · J) → Bf ((tf) · J),
uniformly in 0 ≤ t ≤ 1 and locally uniformly in z ∈ C. By standard
ODE theory, the claim now follows. �

Now everything else falls into place more or less automatically. We
again incorporate the shift also, so consider the group G = O× Z and
its action, and then also its cocycle T (g; J), defined as in (3.5) from
the individual cocycles that we already have.

Theorem 4.2. T (g; J) is a cocycle for the action of G = O × Z. In
particular, the zero curvature equation (3.4) holds for any f ∈ O.

Proof. To verify the cocycle identity (3.1), we approximate the func-
tions f, k ∈ O in g = (f,m) and h = (k, n) by polynomials, and then
we’re back in the classical case and can refer to [6, Theorem 2.2] and
then apply Lemma 4.1 and a similar continuity property of T (f ; J)
with respect to the second argument, which is proved in the same way.

The zero curvature equation now follows automatically, from Theo-
rem 3.1. Alternatively, it could have been derived directly by a sim-
ilar approximation argument, after passing to the integrated form of
(3.4). �

Theorem 4.3. The cocycle from Theorem 4.2 updates m± correctly:

(4.4) ±m±(g · J) = T (g; J)(±m±(J))

for all g ∈ G = O × Z. As a consequence, g · J is unitarily equivalent
to J , the absolute values of the generalized reflection coefficients are
preserved, and g · J and J are reflectionless on the same sets.

The generalized reflection coefficients (which are defined for arbi-
trary Jacobi matrices, not necessarily of classical scattering type) are
discussed in detail in [5].

Proof. (4.4) follows from the same approximation argument, since if
Jn → J (or just d(Jn, J) → 0), then, as is well known, m±(Jn) →
m±(J) locally uniformly. Or we could combine Theorem 4.2 with [6,
Theorem 2.3]. The remaining statements then follow from [6, Theorem
2.4]. �
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Appendix A. Zero curvature from Lax

In this appendix, we give a detailed derivation of the zero curvature
equation (3.4) for the classical (polynomial) Toda flows, defined via
their Lax equations (1.2). Since this step is of central importance in
our scheme (for example, this seems to be the structurally most satis-
fying way of proving that the Toda cocycles update the m functions),
there seems to be some point in giving a completely explicit treatment.
The discussions of the Toda hierarchy that we have come across either
just postulate the zero curvature equation as an alternative starting
point (and substitute for the Lax equation), or they don’t clearly draw
the conclusion we want, even if they present the relevant computa-
tions. Our treatment will stay rather close to that of [9, Section 12.2]
(and see also [3, Section 1.2]), with quite a few details filled in (and

typographical errors in the key formula for ḃ corrected).
So we want to establish:

Theorem A.1. For a polynomial f = p, define B by (4.2). Then B
obeys the zero curvature equation (3.4) along the flow defined by f .

We begin with a calculation that will be used later in the proof.

Lemma A.2.

(Jn)+ =
n−1∑
k=0

a
(
(Jk)dS − (SJk)d

)
Jn−k−1

Here, X+ denotes the upper triangular part of an operator (and not
including the diagonal), as usual thought of as a matrix. In particular,
and this its significance here, we can then write the anti-symmetric
part of X as Xa = 2X+ −X +Xd.

Proof. We establish this by induction on n. We can write

(A.1) J = aS + S∗a+ b.

Then J+ = aS, and since Sd = 0, the n = 1 case is now clear.
Now assume the identity of the Lemma holds for n. We want to show

that it then holds for n + 1 also, and with the help of the induction
hypothesis, this statement may be rewritten as

(A.2) (Jn+1)+ = (Jn)+ J + (Jn)dJ+ − (J+J
n)d.

Now

(Jn+1)+ = ((Jn)+J)+ + ((Jn)dJ)+

= (Jn)+J − ((Jn)+J)d + ((Jn)dJ)+
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and also ((Jn)dJ)+ = (Jn)dJ+, so (A.2) becomes ((Jn)+J)d = (J+J
n)d,

and here
((Jn)+J)d = ((Jn)+S

∗a)d = (JnS∗a)d.

This gives us our final reformulation of (A.2) as

(JnS∗a)d = (J+J
n)d,

and this follows because the matrix elements are real and these two
operators are adjoints of one another. �

Proof of Theorem A.1. Write f(z) =
∑

n≥0 fnz
n. The key idea will be

to apply the Lax operator f(J)a to solutions u of τu = zu. These
sequences u will normally not be in `2, but we can (and will) simply
interpret f(J)au as the infinite matrix f(J)a applied to u as a column.
Since there are only finitely many non-zero entries in each row of f(J),
there will be no convergence issues (here we use that f is a polynomial).

Before we do this, we make use of Lemma A.2 to rewrite

f(J)a =
∑

fn (2(Jn)+ − Jn + (Jn)d)

= 2
∑

0≤k<n

fna
(
(Jk)dS − (SJk)d

)
Jn−k−1 − f(J) + f(J)d.

Now application to a solution u of τu = zu yields

f(J)au = 2
∑

0≤k<n

fnz
n−k−1a

(
(Jk)dS − (SJk)d

)
u− f(z)u+ f(J)du.

Comparison with the expansions (4.1) of g, h, with the coefficients iden-
tified with the help of the Neumann series (4.3), shows that

f(J)au = (−2[fg]aS + [fh] + f(J)d)u,

and thus

Xf (J)u = (−2[fg]aS + [fh] + f(J)d) zu

+ J (2[fg]aS − [fh]− f(J)d)u.

We would now like to write this as a linear combination of two terms:
a multiplication operator applied to u and another one applied to Su.
The first three terms are already of this type, and the final three can
easily be brought to this form also, if we recall (A.1) and use that
(aS + S∗a + b)u = zu. We omit the details of this straightforward,
but tedious calculation and just state the result. Here, we will use the
notations x+ = Sx and x− = S∗x for shifted sequences, so for example
(x+)n = xn+1; Sx itself would be ambiguous here, as it could mean
the operator (of multiplication) x followed by the operator S or the
operator of multiplication by (Sx). For temporary relief with rapidly
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growing expressions, we also introduce the abbreviation H = [fh] +
f(J)d (so H = Hn(z; J) is a sequence with polynomial dependence on
z). We obtain that

Xf (J)u = KaSu+ Lu,

K = 2(z − b+)[fg+]− 2(z − b)[fg] +H− −H+,

L = (z − b)(H −H−)− 2a2[fg+] + 2a2−[fg−].

In particular, evaluation at an n ∈ Z gives that

(Xf (J)u)n = Knanun+1 + Lnun;

on the other hand,

(Xf (J)u)n = (J̇u)n = ȧnun+1 + ḃnun + ȧn−1un−1

=

(
ȧn − an

ȧn−1
an−1

)
un+1 +

(
ḃn + (z − bn)

ȧn−1
an−1

)
un.

Now any two consecutive values of a solution u may be prescribed
arbitrarily, so it follows that

ȧn
an
− ȧn−1
an−1

= Kn,

ḃn + (z − bn)
ȧn−1
an−1

= Ln.(A.3)

The first equation, viewed as a difference equation for ȧn/an, has the
general solution

(A.4)
ȧn
an

= 2(z − bn+1)[fgn+1]−Hn+1 −Hn + C(z; J),

This simplifies considerably because g, h are related by the recursion
[9, Formula (2.188)]

hn+1 + hn = 2(z − bn+1)gn+1.

We obtain that

(A.5)
ȧn
an

= −2 Res(fgn+1)− f(J)d,n+1 − f(J)d,n + C,

and here Res(L) denotes the (formal) residue of the Laurent series
L, that is, the coefficient of z−1. We now also see that C must be
independent of z because everything else in (A.5) is. In fact, from the
Neumann series (4.3), it follows that Res(fg) = −f(J)d, so we may
rewrite (A.5) as

ȧn
an

= f(J)d,n+1 − f(J)d,n + C.
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We can now see that C = 0, as follows: Since ȧn = 〈δn, Xf (J)δn+1〉,
we deduce that C only depends on those coefficients of J not too far
from n (how far exactly is determined by the degree of f). But this
holds for any n, so C doesn’t depend on J at all, and for a J with
constant coefficients (which is fixed by all Toda flows) we clearly must
have C = 0.

By plugging (A.4) into (A.3), and specializing to n = 1 for conve-
nience, we obtain the pair of formulae

ȧ1
a1

= 2(z − b2)[fg2]−H2 −H1

ḃ1 = −2(z − b1)2[fg1] + 2(z − b1)H1 + 2a20[fg0]− 2a21[fg2].

Now another tedious but straightforward calculation shows that these
imply the zero curvature equation (3.4), for the B from (4.2). �
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