
Finite gap potentials and WKB asymptotics for

one-dimensional Schrödinger operators

Thomas Kriecherbauer1 and Christian Remling2

February 26, 2001

(to appear in Commun. Math. Phys.)

1. Universität München, Mathematisches Institut, Theresienstr. 39, 80333 München,
GERMANY
E-mail: tkriech@rz.mathematik.uni-muenchen.de
2. Universität Osnabrück, Fachbereich Mathematik/Informatik, 49069 Osnabrück,
GERMANY
E-mail: cremling@mathematik.uni-osnabrueck.de

2000 AMS Subject Classification: primary 34L40, 81Q10, secondary 30F99

Key words: Schrödinger operator, finite gap potential, singular spectrum, Ja-
cobi inversion problem

Abstract

Consider the Schrödinger operator H = −d2/dx2 + V (x) with power-
decaying potential V (x) = O(x−α). We prove that a previously obtained
dimensional bound on exceptional sets of the WKB method is sharp in
its whole range of validity. The construction relies on pointwise bounds
on finite gap potentials. These bounds are obtained by an analysis of the
Jacobi inversion problem on hyperelliptic Riemann surfaces.

1 Introduction

We are interested in one-dimensional Schrödinger equations,

−y′′(x) + V (x)y(x) = Ey(x), (1)

and the spectra of the corresponding self-adjoint operators Hβ = −d2/dx2 +
V (x) on L2(0,∞), say. The index β ∈ [0, π) refers to the boundary condi-
tion y(0) cosβ + y′(0) sinβ = 0. The spectral properties of the operators Hβ

give information on the large time behavior of the quantum mechanical system
described by (1).
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In this paper, we will present an alternate approach to an earlier result of
one of us [21]. With this new approach, we can remove a technical condition
and thus prove that a previously obtained bound on the embedded singular
spectrum of Hβ is sharp in its whole range of validity. We will describe this
result shortly; let us first point out that the new idea of this paper is to use
finite gap potentials in the construction of [21]. The main difficulty is to obtain
good pointwise bounds on these potentials. A substantial part of this paper is
devoted to this problem. More specifically, we will have to study in some detail
the Jacobi inversion problem on hyperelliptic Riemann surfaces. The result of
this analysis is formulated as Theorem 3.1. Actually, our proof gives more than
stated: We obtain a whole sequence of good pointwise approximations (where,
very roughly, “good” means better than expected, due to cancellations) to finite
gap potentials. While our motivation for proving Theorem 3.1 is to provide tools
for the proof of Theorem 1.1 below, this discussion is perhaps of independent
interest.

Let us now return to (1); suppose that the potential V is bounded by a
decaying power, that is,

|V (x)| ≤ C

(1 + x)α
(α > 0). (2)

Then, if α > 1/2, the operators Hβ have absolutely continuous spectrum essen-
tially supported by (0,∞), as was first proved in [1, 19]. Embedded singular
spectrum can occur if α ≤ 1 (see [18, 26, 30]), but there are restrictions on
the dimension of the singular part of the spectral measure. This is intimately
related to the problem of solving (1) asymptotically (for large x). We say that
a solution y(x,E) of the Schrödinger equation satisfies the WKB asymptotic
formulae if(

y(x,E)
y′(x,E)

)
=
(

1
i
√
E

)
exp

(
i

∫ x

0

√
E − V (t) dt

)
+ o(1) (x→∞).

(3)

It is well known that there exist solutions of (1) satisfying (3) for all E > 0 if the
potential V decays and is slowly varying in a suitable sense (see, for instance, [7,
Chapter 2]). Obviously, this latter assumption need not hold if V only satisfies
(2). Nevertheless, recent work [1, 2, 3, 19, 20] has shown that (3) continues
to hold off a small exceptional set of energies E as long as α > 1/2. Call this
exceptional set S; in other words,

S = {E > 0 : No solution of (1) satisfies (3)}. (4)

General criteria [11, 25, 29] show that if there is some embedded singular spec-
trum on (0,∞), then the corresponding parts of the spectral measures are sup-
ported by S. In other words, if ρ(β) denotes the spectral measure of Hβ , then
ρ

(β)
sing((0,∞) \ S) = 0 for all β. Therefore, it is interesting to study S in de-

tail. We know from [1, 19] that S is of Lebesgue measure zero if α > 1/2; this
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was subsequently strengthened in [20] where it was proved that the Hausdorff
dimension of S satisfies dimS ≤ 2(1 − α). Formally, this result is valid for all
α ∈ R (if one defines dim ∅ = −∞), but it gives nontrivial information only if
1/2 < α ≤ 1. We will show that this bound is sharp and is even attained for
suitable potentials:

Theorem 1.1 For every α ∈ (1/2, 1], there exist potentials V (x) satisfying (2),
so that dimS = 2(1− α).

If α /∈ (1/2, 1], the whole picture is different. More precisely, if α ≤ 1/2, then S
can have full Lebesgue measure in (0,∞) [14, 15, 24] and the spectrum can be
purely singular. On the other hand, it is easy to prove that S = ∅ if α > 1 (see,
e.g., [7]).

In [21], Theorem 1.1 was proved for α > 2/3. Things get more difficult as α
approaches 1/2. In particular, we really need the full force of Theorem 3.1 in
that the exponent N there gets larger and larger as α decreases to 1/2.

Actually, here, too, we show more than stated: For any given function ε(x)
with ε(x)→ 0 as x→∞ (no matter how slowly), we can construct a potential
V (x) = O(x−α−ε(x)), so that dimS = 2(1− α).

There are extensions of the results quoted above to far more general settings.
Deift and Killip [5] have proved that there is absolutely continuous spectrum
essentially supported by (0,∞) already if V ∈ L1 + L2; very recently, Killip
has obtained even stronger results in this direction [13]. WKB asymptotics off
exceptional sets have been established by Christ and Kiselev [2, 3] under very
general conditions, including V ∈ L1 + Lp for some p < 2 (but not in the
borderline case p = 2, which remains open).

A major open question in this context is Simon’s problem no. 7 [27]: Are
there potentials satisfying (2) with α > 1/2, so that for some boundary condition
β, the operator Hβ has some singular continuous spectrum?

We organize this paper as follows. In Sect. 2, we discuss the construction
of the so-called finite gap potentials, that is, of quasi-periodic potentials with
finitely many prescribed gaps in the spectrum. Since this material is rather
classical, we concentrate on those aspects of the theory that are needed later.
The following section introduces the problem of obtaining pointwise bounds on
finite gap potentials. We state our main result on finite gap potentials (Theorem
3.1) and discuss some general features of this result. The proof is given in Sect.
4, 5, 6; this analysis is perhaps the central part of this paper. It depends on a
study of the Jacobi inversion problem in cases where a large number of small
gaps is present. A major role will be played by a graphical representation of the
terms of a perturbation series, which we introduce in Sect. 5. With Theorem
3.1 as new input, we can then obtain Theorem 1.1, relying mainly on the ideas
already contained in [21]. This is done in Sect. 7. In fact, with our new approach,
the treatment becomes more transparent.

Acknowledgment: C.R. acknowledges financial support by the Heisenberg
program of the Deutsche Forschungsgemeinschaft.
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2 Finite gap potentials

In this section, we will briefly review the construction and some results on finite
gap potentials. We will more or less follow the representation given in [16]. For
further information on this many-faceted topic (for example, the connections to
equations of the KdV hierarchy), see [9, 10]. The needed facts from the theory
of compact Riemann surfaces can be found in [8, 28].

Let energies E0 < E1 < · · · < E2g be given. The aim is to construct a family
of (quasi-periodic) potentials V ∈ C∞(R) so that the corresponding operators
H = −d2/dx2 + V (x) on L2(R) have purely absolutely continuous spectrum
with precisely the prescribed gaps:

σ(H) = R \
g⋃

n=0

(E2n−1, E2n) (E−1 := −∞). (5)

To this end, consider the Riemann surface S of

R(z) =

(
2g∏
n=0

(En − z)

)1/2

.

S is compact and hyperelliptic and its genus is equal to g. A topological model
of S can be obtained by gluing together two copies of the extended complex
plane cut along the gaps (∞, E0), (E1, E2), . . . , (E2g−1, E2g).

The points of S may thus be viewed as pairs ẑ = (z,R(z)). Here, z ∈ C∪{∞}
is the canonical projection of ẑ ∈ S onto C∪ {∞}, and R(z), which is of course
already determined by z up to a sign, shows on which sheet of the surface ẑ lies.
Put differently, the canonical projection ẑ 7→ z gives a two-sheeted branched
covering of the Riemann sphere C∪{∞} by S; the preimages of∞, E0, . . . , E2g

are branch points of order one.
Standard coordinates ζ on S can be defined as follows. If ẑ is not a branch

point, put ζ = z in a neighborhood of ẑ; near a finite branch point Êj , use
ζ = (Ej − z)1/2, the sign being determined by the sign of R, and near infinity,
use similarly ζ = (−z)−1/2.

There are precisely g linearly independent holomorphic differentials (also
known as Abelian differentials of the first kind) on S. One can obtain unique
basis elements by prescribing certain periods. We will work with the standard
normalization which amounts to demanding that for i, j = 1, . . . , g,

2
∫ E2i

E2i−1

ωj = δij . (6)

(The notation is a little sloppy: The path of integration projects onto [E2i−1, E2i],
and (−1)iR ≤ 0 on this path.) Note that the left-hand side is just the integral
of ωj over the cycle ai of a standard homology basis (see, e.g., [10, p. 109ff]).
One can then show that the ωj thus defined are of the form

ωj =
pj(z)
R(z)

dz, pj(z) = cj
∏
i 6=j

(λ(j)
i − z), (7)
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with λ
(j)
i ∈ (E2i−1, E2i), cj > 0. Of course, this representation refers to the

coordinate maps ẑ 7→ z discussed above.
The Abel-Jacobi map α sends positive divisors of degree g (that is, unordered

collections of g points from S) to the Jacobi variety of S, which is the complex
torus equal to Cg modulo the period lattice of the holomorphic differentials.
This map is onto; in other words, the Jacobi inversion problem can be solved.
We will need the Abel-Jacobi map only for divisors of the form (µ̂1, . . . , µ̂g)
with µi ∈ [E2i−1, E2i]. The Abel-Jacobi map is then given by

αi(µ̂1, . . . , µ̂g) = 2π
g∑
j=1

∫ µ̂j

Ê2j−1

ωi mod 2π; (8)

here, we take paths of integration whose projections lie entirely in the cor-
responding gaps [E2j−1, E2j ]. It follows from classical theorems of Abel and
Jacobi [28, Chapter 10] that α = (α1, . . . , αg) is a bijection from the set of
divisors specified above onto the real part of the Jacobi variety Tg = [0, 2π)g.
Alternately, this fact may be verified directly, using a representation of the
Abel-Jacobi map that will be derived below (see eq. (16)).

Actually, (8) differs from the standard definition of the Abel-Jacobi map by
an additive constant vector and the factor 2π; the choice (8) is more convenient
here.

Now the stage has been set for the actual construction of the finite gap
potentials. Consider the following linear flow on Tg: φxα0 = α0 + νx, where
the frequency vector ν is given by

νj = 2π res
(

(−z)1/2ωj

)∣∣∣
z=∞

.

Using the coordinate ζ = (−z)−1/2 at z =∞, we can easily evaluate the residue
to obtain νj = 4πcj , where cj is the normalization constant of the polynomial
pj (see (7)). Now pull back the flow φx to the set of divisors (µ̂1, . . . , µ̂g),
using the Abel-Jacobi map. In other words, define the functions µ̂j(x) ∈ S
(µj(x) ∈ [E2j−1, E2j ]) by requiring that

α(µ̂1(x), . . . , µ̂g(x)) = α0 + νx.

Next, introduce a potential V by the following trace formula:

Vα0(x) = E0 +
g∑

n=1

(E2n−1 + E2n − 2µn(x)). (9)

One can then show that this family of potentials solves the inverse problem
stated at the beginning of this section. Namely, the operators H = −d2/dx2 +
Vα0(x) on L2(R) have purely absolutely continuous spectrum equal to the set
given in (5). This follows from the following representation of the diagonal of
the Green function of H:

G(x, x; z) =
1

2R(z)

g∏
n=1

(µn(x)− z) . (10)
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This important formula is derived with the aid of the so-called Baker-Akhieser
function, which gives explicit expressions for the solutions y of the DE Hy = zy.
See [16] for the details.

Actually, the right-hand side of (10) defines a meromorphic function on S
(with simple poles precisely at the finite branch points) for every fixed x ∈ R.
The Green function, however, depends on z ∈ C; therefore, we must complement
(10) by recalling that Im G(z) Im z > 0 for Im z 6= 0.

It is useful (and probably also more natural) to interpret the above recipe
in a slightly different way. Namely, define f : Tg → R implicitly by the trace
formula:

f(β) = E0 +
g∑

n=1

(E2n−1 + E2n − 2µn), (11)

where α(µ̂1, . . . , µ̂g) = β. Then the finite gap potential Vα(x) is obtained by
evaluating f along the trajectory of α under the flow φxα = α+ νx.

So, if ν is known, then Vα is computed by inverting the Abel-Jacobi map.
We remark parenthetically that there is an “explicit” solution to this problem
which uses Riemann theta functions [9, 10, 17], but these formulae are not of
much use here.

3 Pointwise estimates on finite gap potentials

Since µj ∈ [E2j−1, E2j ], the trace formula (9) immediately implies the following
bound on Vα(x):

sup
x∈R
|Vα(x)− E0| ≤

g∑
n=1

(E2n − E2n−1). (12)

In other words, ‖Vα − E0‖∞ is bounded by the `1-norm of the sequence of the
gap lengths E2n − E2n−1. It is also obvious that nothing more can be said
in general: Indeed, if the components of the frequency vector ν are rationally
independent, every trajectory {φxα : x ∈ R} is dense in the torus Tg, and thus
the L∞-norm of Vα(x)−E0 is equal to the maximum of f−E0 over the torus, so
(12) holds with equality in this case. However, there still is hope that (12) can
be improved if the supremum is only taken over a bounded (but large) interval
0 ≤ x ≤ L. Then the problem is to choose a trajectory whose initial piece avoids
those points of the torus where |f | is large. Our next major goal is to confirm
this hope. This will occupy us for the following four sections.

It will be convenient to use the centers and the half-lengths of the gaps as
new parameters. So, define

mn =
E2n−1 + E2n

2
, ln =

E2n − E2n−1

2
.

The finite gap potentials that are needed in the construction underlying Theo-
rem 1.1 have gaps which are small compared to the bands [E2n, E2n+1]. There-
fore, we from now on concentrate on this situation. To make this condition
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precise, we introduce

l = max
n=1,... ,g

ln, d = min
n=2,... ,g

(mn −mn−1);

our condition on the parameters of the construction will be that (l/d) ln g is
sufficiently small.

The following theorem is our main result on finite gap potentials. It says
that the family of finite gap potentials {Vα : α ∈ Tg} contains functions which
are over long intervals “almost” bounded by the `2-norm of the gap lengths
(rather than the `1-norm).

According to the above remarks, we now use the following parameters to
describe finite gap potentials: g ∈ N (g ≥ 2) is the number of gaps; E0 < m1 <
· · · < mg and l1, . . . , lg > 0 describe the locations and the lengths of the gaps,
respectively. We require that the gaps do not touch or overlap. Clearly, this
amounts to demanding that E0 < m1 − l1 and mn + ln < mn+1 − ln+1 for
n = 1, . . . , g − 1.

Theorem 3.1 Let C1, C2 > 0 be constants so that C1 ≤ m1−E0, mg−E0 ≤ C2,
and let N ∈ N0. Then there exists a constant C, depending only on C1, C2, and
N (but not on the parameters of the finite gap potentials), such that the following
holds. For every L ≥ 1, there exists an α ∈ Tg so that

sup
0≤x≤L

∣∣∣f(α+ νx)− f̂0

∣∣∣ ≤ C [g1/2l (ln(gL))1/2 + gl(ld−1 ln g)N+1
]
,

where f was defined in (11) and

f̂0 =
∫
Tg

f(β)
dβ

(2π)g
.

Recall from Sect. 2 that f(α+ νx) is just the finite gap potential Vα(x). In the
proof of Theorem 3.1, we will in fact show that the assertion holds with large
probability if α ∈ Tg is chosen at random.

The first term of the bound is the `2-norm of the gap lengths (as promised),
times a logarithmic factor. Of course, the point is that the increase in L is slow,
so we can still take a relatively large L. Note, however, that we no longer get an
improvement over the trivial bound gl if L is of the order eg. In the application
of Theorem 3.1 in this paper, we will have L ≤ gγ , and then Theorem 3.1 indeed
gives a good bound.

From a theoretical point of view, a particularly neat situation arises when
the flow φx and thus also the finite gap potentials are periodic with period p.
In that case, one can take L = p to obtain a bound which is valid for all x ∈ R.
This remark is not as academic as it may seem, because one can show, using
topological arguments, that in situations with small gaps one can get a periodic
φx by slightly moving the centers mn. The period will be of the order p ≈ d−1.
See also [6, Appendix C.2] for statements of this type.

The second term of the above bound contains the `1-norm gl, but multiplied
by an arbitrarily high power of ld−1 ln g. So Theorem 3.1 is interesting only if
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this combination is small, but this is the case in our construction for proving
Theorem 1.1. What exactly “small” means obviously depends on C and thus
on C1, C2, N , but on nothing else. This will be very important in the proof of
Theorem 1.1, where we will apply Theorem 3.1 to a whole sequence of finite gap
potentials.

We would like to emphasize the fact that we do not subtract E0 from Vα(x)
(which is perhaps the constant that comes to mind first), but rather the av-
erage of f over the real part of the Jacobi variety. This may be viewed as a
renormalization, due to higher order terms. Indeed, E0 is the limiting value of
f at l = 0; now the Theorem says that the zeroth Fourier coefficient f̂0 (which
contains also terms which are of higher order in the small parameter l/d) gives
a better constant approximation to Vα(x). This remark is actually true for ap-
proximations by trigonometric polynomials of arbitrarily high degree; we will
comment on this point again after having discussed the proof of Theorem 3.1.

We will give this proof in the following three sections. This is the plan of
attack: We will first solve the Jacobi inversion problem up to order N in the
small parameter ld−1 ln g. (As explained above, the problem of computing finite
gap potentials basically is the Jacobi inversion problem, that is, the problem of
inverting the Abel-Jacobi map.) This will be done by expanding in Fourier and
Taylor series and solving the equations by iteration. The expressions obtained
in this way rapidly get out of hand as N increases. However, things become
surprisingly transparent if a graphical representation of the perturbation series
is introduced. This will be developed in Sect. 5, after having discussed some
preparatory material in Sect. 4.

Then, in Sect. 6, we extend classical methods, due to Salem and Zygmund
[23], for bounding random trigonometric polynomials to finish the proof. In its
original version, this argument shows, for example, that for a random choice
of signs, p(x) =

∑N
n=1±an cosnx is almost bounded by the `2-norm of its

coefficients: ‖p‖∞ ≤ C‖a‖2(lnN)1/2. Theorem 3.1 can perhaps be viewed as a
nonlinear version of this result.

4 Proof of Theorem 3.1: Basic estimates

We want to analyze the Abel-Jacobi map (8). We can parametrize the divisors
(µ̂1, . . . , µ̂g) (as usual, µj ∈ [E2j−1, E2j ]) by the points (ψ1, . . . , ψg) of another
copy of the torus Tg = [0, 2π)g (not to be confused with the real part of the
Jacobi variety) as follows: Write

µj = mj − lj cosψj , (13)
R(µj) = Rj(µj)ilj sinψj , (14)

whereRj(z) = R(z)/
√

(E2j−1 − z)(E2j − z). This definition is not yet complete
since the sign of Rj(µj) on the right-hand side of (14) also needs to be specified.
Note that iRj(µ) is real and non-zero for E2j−1 < µ < E2j . Therefore, it makes
sense to require that iRj(µ) be positive for odd j and negative for even j and
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µ as above. So, for a given ψj ∈ [0, 2π), eq. (13) tells us what the projection
µj of µ̂j is, while (14) determines the sheet on which µ̂j lies. In particular, if
ψj+ψ′j = 2π, then the corresponding points µ̂j , µ̂′j ∈ S have the same projections
but lie on different sheets.

The substitution (13), (14) allows us to write integrals involving the ωj in a
particularly convenient way. Indeed, recalling (7), we see that the normalization
condition (6) now takes the form

2
∫ π

0

pj(µ)
iRn(µ)

∣∣∣∣
µ=mn−ln cosψ

dψ = δjn. (15)

Similarly, the Abel-Jacobi map, now viewed as a map from T
g to Tg (but still

denoted by α), can be written as

αj(ψ1, . . . , ψg) = 2π
g∑

n=1

∫ ψn

0

pj(µ)
iRn(µ)

∣∣∣∣
µ=mn−ln cosψ

dψ. (16)

Finally, the function f from the trace formula for V (see (11)) takes the
following form when expressed in terms of the new variables:

f = E0 + 2
g∑

n=1

ln cosψn. (17)

As already discussed, Theorem 3.1 is vacuous if ld−1 ln g is not small (if
ld−1 ln g ≥ ε, just take C = 4ε−N−1). Thus only the case where

ld−1 ln g < ε (18)

needs proof; here, ε > 0 can be chosen according to our needs and may depend
on C1, C2, and N (but on nothing else). In addition to the hypotheses of
Theorem 3.1, we will therefore assume (18) with a sufficiently small ε from now
on. In particular, the reader should keep in mind that (18) with a suitable ε =
ε(C1, C2, N) as well as the hypotheses of Theorem 3.1 are (tacit) assumptions
in all lemmas of Sect. 4–6.

Notational remark. In the sequel, we will use the following conventions. A
“constant” (usually denoted by C) is a number that only depends on C1, C2, and
N . In particular, the constants which are implicit in the Landau notation O(· · · )
may only depend on C1, C2, and N . We will sometimes write a . b instead
of a ≤ Cb (or a = O(b)); here, C is a constant in the sense just explained.
Similarly, a ≈ b is short-hand for two-sided estimates. Finally, the value of C
may change from one formula to the next, so there is nothing wrong with an
inequality like C + 1 ≤ C (to give a blatant example).

Assuming (18), we can analyze (15), (16) in some detail by using Taylor
expansions. The following lemma will get us started.
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Lemma 4.1 For all j, n = 1, . . . , g, the function pj(z)/Rn(z) is holomorphic
in a neighborhood of [E2n−1, E2n], and for all s ∈ N0,

max
z∈[E2n−1,E2n]

∣∣∣∣ dsdzs pj(z)Rn(z)

∣∣∣∣ ≤ (Cd
)s

Cs!
d−1|mj −mn|+ 1

.

Moreover,

cj =
(mj − E0)1/2

2π
(
1 +O((l/d)2 ln g)

)
.

Proof. The first assertion is obvious; in fact, it holds on any simply connected
neighborhood of [E2n−1, E2n] that avoids the other branch points. Thus, for
z ∈ [E2n−1, E2n], we can use the Cauchy formula to represent the derivatives:

f (s)(z) =
s!

2πi

∫
K

f(ζ)
(ζ − z)s+1

dζ. (19)

Here, we integrate over the contour K = {ζ = mn + (d/2)eiϕ : 0 ≤ ϕ ≤ 2π}
in counter-clockwise direction. Note that K is well separated from all gaps
[E2i−1, E2i]. In particular, if l/d is sufficiently small (for instance, l/d ≤ 1/4
will do), then |ζ − z| & d for all ζ ∈ K, z ∈ [E2n−1, E2n], so (19) implies that

max
z∈[E2n−1,E2n]

∣∣∣f (s)(z)
∣∣∣ ≤ C(C/d)ss! max

ζ∈K
|f(ζ)| . (20)

We want to apply this to f = pj/Rn, so we need to estimate pj and Rn: We
have that for ζ ∈ K,

|Rn(ζ)| = |ζ − E0|1/2
∏
i 6=n

|mi − li − ζ| |mi + li − ζ|

1/2

&
∏
i 6=n

|mi − ζ|
(

1 +O

(
l2

(mi −mn)2

))
.

Here we used the fact that mn − E0 ≈ 1 by the hypotheses of Theorem 3.1.
Similarly, since the unknown zeros λ(j)

i of pj satisfy λ(j)
i ∈ (E2i−1, E2i) and

since cj > 0, we obtain

|pj(ζ)| = cj
∏
i 6=j

∣∣∣λ(j)
i − ζ

∣∣∣ = cj
∏
i 6=j

|mi − ζ|
(

1 +O

(
l

|mi −mn|+ d

))
.

Now |mi −mj | ≥ d|i− j|, so taking logarithms, we see that for small ld−1 ln g,∏
i 6=j

(
1 +O

(
l

|mi −mn|+ d

))
= 1 +O(ld−1 ln g),

∏
i 6=n

(
1 +O

(
l2

(mi −mn)2

))
= 1 +O((l/d)2).
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Estimates of this type will be used quite often in the sequel. Combining the
bounds just proved, we get∣∣∣∣ pjRn (ζ)

∣∣∣∣ ≤ cj C

d−1|mj −mn|+ 1
,

and the claim on the derivatives of pj/Rn would follow with (20) if we knew
already the asserted formula for the cj ’s.

So, it only remains to prove the estimate on cj stated in Lemma 4.1. Taylor’s
theorem with remainder gives

pj(µ)
Rn(µ)

∣∣∣∣
µ=mn−ln cosψ

=
pj(mn)
Rn(mn)

− d

dz

(
pj
Rn

)
(mn) ln cosψ +

O

(
cj

(l/d)2

d−1|mj −mn|+ 1

)
.

Plug this into (15). The first order term integrates to zero. Also,

Rn(mn) = −i
√
mn − E0(1 +O((l/d)2))

∏
i 6=n

(mi −mn),

so we obtain

2πcj√
mn − E0

∏
i 6=j(λ

(j)
i −mn)∏

i 6=n(mi −mn)
(1 +O((l/d)2)) +

O

(
cj

(l/d)2

d−1|mj −mn|+ 1

)
= δjn. (21)

For j 6= n, (21) leads to

λ
(j)
n −mn

mj −mn
(1 +O(ld−1 ln g)) = O

(
l2/d

|mj −mn|

)
,

thus λ(j)
n = mn +O(l2/d). Using this in (21) with j = n, we finally obtain

2πcn√
mn − E0

∏
i 6=n

(
1 +O

(
l2d−1

|mi −mn|

))
= 1 +O

(
cn (l/d)2

)
,

and the lemma follows. �
We now expand the integrands of the Abel-Jacobi map (16) in a Fourier

series. This, and not a Taylor series, is the appropriate choice here, because it
gives the correct “renormalized” constant term immediately, without contribu-
tions from higher order terms. So write

2πpj(µ)
iRn(µ)

∣∣∣∣
µ=mn−ln cosψ

=
∑
m∈Z

am(j, n)eimψ. (22)

11



Since the left-hand side is in C∞(T) as a function of ψ, this expansion converges
uniformly. Moreover,

am(j, n) =
∫ 2π

0

pj(µ)
iRn(µ)

∣∣∣∣
µ=mn−ln cosψ

e−imψ dψ, (23)

and, as a consequence, a0(j, n) = δjn (by (15)).

Lemma 4.2

|am(j, n)| ≤ (Cl/d)|m|

d−1|mj −mn|+ 1

Proof. This is trivially satisfied if m = 0, so we suppose that m 6= 0. Then, by
Taylor’s theorem and Lemma 4.1,

pj
Rn

(mn − ln cosψ) =
|m|−1∑
k=0

bk(j, n)(−ln cosψ)k + ρ|m|(ψ),

where the remainder satisfies the estimate∣∣ρ|m|(ψ)
∣∣ ≤ (Cl/d)|m|

d−1|mj −mn|+ 1
.

Since
∫ 2π

0
cosk ψ e−imψ dψ = 0 for |m| > k, the claim now follows from (23). �

Using a0(j, n) = δjn, we can now plug (22) into (16) to write the Abel-Jacobi
map in the form

αj = ψj +
∑
m∈Z

′
g∑

n=1

am(j, n)
im

(eimψn − 1). (24)

Here and in the sequel, the prime at the sum sign indicates omission of the term
with m = 0. To obtain (24), we have integrated (22) term by term, which is
allowed because of the uniform convergence. We want to solve the system of
equations (24) for ψ1, . . . , ψg. It is useful to separate the leading term, which,
due to the smallness of the am(j, n)’s expressed by Lemma 4.2, is αj . So,
introduce θj by writing ψj = αj + θj ; then (24) becomes

θj +
∑
m

′
g∑

n=1

am(j, n)
im

(eimαneimθn − 1) = 0, (25)

and these equations must now be solved for the θj ’s. Actually, we will compute
the θj ’s only up to an error of order O((ld−1 ln g)N+1). Note that by Lemma
4.2 and (25),

|θj | ≤ 2
∑
m

′
(Cl/d)|m|

g∑
n=1

1
d−1|mj −mn|+ 1

. ld−1 ln g, (26)

12



since d−1|mj−mn| ≥ |j−n|. Now we keep only those terms of (25) which are of
order ≤ N in the small parameter ld−1 ln g, and we iterate these new equations
N times. The following lemma justifies this procedure; we get indeed a good
approximation to θj .

Lemma 4.3 Define θ(0)
j = 0,

θ
(s+1)
j =−

∑
|m|≤N

′
g∑

n=1

am(j, n)
im

(eimαn − 1)

−
∑
|m|≤N

′
g∑

n=1

am(j, n)
im

eimαn
N−|m|∑
t=1

(imθ(s)
n )t

t!
, (27)

s = 0, 1, . . . , N − 1. Then
∣∣∣θ(N)
j − θj

∣∣∣ ≤ C(ld−1 ln g)N+1.

Proof. We will prove by induction that∣∣∣θ(s)
j − θj

∣∣∣ ≤ C(ld−1 ln g)s+1 (28)

for s = 0, 1, . . . , N . For s = 0, this is just (26). Now assume (28) holds for some
s ≥ 0. We claim that then

θ
(s+1)
j = −

∑
m∈Z

′
g∑

n=1

am(j, n)
im

(
eimαneimθ

(s)
n − 1

)
+O((ld−1 ln g)N+1). (29)

Indeed, comparison with (27) shows that the error from (29), which we want to
bound by C(ld−1 ln g)N+1, is equal to

∑
|m|≤N

′
g∑

n=1

am(j, n)
im

eimαn
∞∑

t=N+1−|m|

(imθ(s)
n )t

t!
+

∑
|m|>N

g∑
n=1

am(j, n)
im

(
eimαneimθ

(s)
n − 1

)
.

The induction hypothesis implies that∣∣∣θ(s)
n

∣∣∣ ≤ ∣∣∣θ(s)
n − θn

∣∣∣+ |θn| = O(ld−1 ln g),

so, by Lemma 4.2, the first contribution to the error is bounded by a constant
times

∑
|m|≤N

′
g∑

n=1

(l/d)|m|

d−1|mj −mn|+ 1
(ld−1 ln g)N+1−|m|

.
∑
|m|≤N

′
(l/d)N+1(ln g)N+2−|m| . (ld−1 ln g)N+1,

13



as desired. Similarly, the second contribution to the error term can be estimated
by

∑
|m|>N

g∑
n=1

(Cl/d)|m|

d−1|mj −mn|+ 1
. ln g

∑
|m|>N

(Cl/d)|m| . (l/d)N+1 ln g.

This concludes the proof of (29). Adding (29) and (25), we obtain

θ
(s+1)
j = θj −

∑
m∈Z

′
g∑

n=1

am(j, n)
im

eimαn
(
eimθ

(s)
n − eimθn

)
+O((ld−1 ln g)N+1).

Lemma 4.2 together with∣∣∣eimθ(s)
n − eimθn

∣∣∣ . |m|(ld−1 ln g)s+1,

which follows from the induction hypothesis, now yield the induction statement
(28) for s+ 1. �

5 The Feynman rules

We now introduce, as announced above, a graphical representation of the terms
obtained from the recursion (27). We have θ(0)

j = 0 and

θ
(1)
j = −

∑
|m|≤N

′
g∑

n=1

am(j, n)
im

(eimαn − 1).

This latter expression can be represented by the following graph:

u - hj n

m

Here is the recipe to recover θ(1)
j from this graph: Associate the factor am(j, n)

with the edge m with vertices j and n. The circled vertex n contributes a factor
eimαn − 1, where m is the parameter of the incoming edge. Finally, multiply by
i/m and sum over m = ±1, . . . ,±N and n = 1, . . . , g.

These rules, suitably generalized, also work for larger values of s. At first
sight, the formula for θ(2)

j looks considerably more complicated than that for

θ
(1)
j because now the second line of (27) also contributes. However, it is not

hard to convince oneself that θ(2)
j can actually be computed by evaluating the

following graphs.

14
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m
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+
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m1

n1��
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HHH

HH

H
HHj

h

h
m2

m3

n2

n3

+ · · ·

More precisely, there are N such graphs; they have the common property that
every edge except the first one emanates from the second vertex. Again, edges
contribute factors of the form am(n, n′), and for each vertex 6= j, there is a
factor eimαn (eimαn − 1 if the vertex is marked by a circle). Then one has to
multiply by a factor that depends on the edge indices mi and also on the graph
and finally sum over all parameters except j. (Explicitly, this factor is

i(−1)E+1 mE−2
1

(E − 1)!

E∏
k=2

m−1
k ,

where E is the number of edges.)
We are now ready to formulate the rules for computing ei(αj+θj) from graphs

of this type. The quantity ei(αj+θj) = eiψj is of especial interest here because
the function f from (17) depends on exactly this combination.

Feynman rules for ei(αj+θj)

1. Draw all directed trees with at most N edges. By a “directed tree”, we
mean a connected graph with the property that there is precisely one
vertex with only outgoing edges, while for every other vertex, there is
exactly one incoming edge. The vertices without outgoing edges are called
final vertices (the trivial graph consisting of just one vertex is excluded in
this definition); they are marked by circles.

Formally, such a graph (with E edges, say) may be represented by E +
1 symbols V1, . . . , VE+1 (“vertices”) and a collection of E ordered pairs
(Vi, Vj) with i 6= j (“edges”). Two graphs are equal if there is a bijection
from one set of vertices to the other which preserves the edges.

The figure below illustrates the case N = 3.
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2. For every graph, label the (unique) vertex without incoming edge j. Then,
attach the indices n1, . . . , nE to the remaining vertices, and label the
edges m1, . . . ,mE . It is of no significance how the indices n1, . . . , nE and
m1, . . . ,mE are assigned to the vertices and edges, respectively, but once
a graph has been labeled, this particular labeling is fixed once and for all.

3. These labeled graphs are translated into formulae as follows. An edge
labeled m pointing from vertex n to vertex n′ stands for a factor am(n, n′).
A non-final vertex with index n 6= j contributes eimαn , where m is the
(unique) incoming edge. In case n is a final vertex, the rule is similar
except that the factor now is eimαn − 1. The vertex j always carries the
factor eiαj . Finally, the result is multiplied by a number cG(m1, . . . ,mE)
which depends on the graph and the edge indices (and N , but this is fixed
throughout). In principle, cG can be computed, as the discussion below
will show, but we do not need to know the precise values of the cG’s here.

4. Sum over mi 6= 0,
∑E
i=1 |mi| ≤ N , and ni = 1, . . . , g. Finally, sum over

all graphs.

Carrying out these instructions produces a (complicated) function of the
αn’s. The claim is that up to an error O((ld−1 ln g)N+1), this function coincides
with ei(αj+θj). We will now prove this assertion, which is the central result of
this section.

This proof, though not really difficult, is not easy to formulate; to get a
feeling for the underlying principles, it is advisable to try things out by iterating
(27) a few times and drawing some pictures. Our verbal description will thus
be somewhat sketchy.

The strategy of the proof, however, is straightforward. First of all, we show
that the approximations θ(s)

j from (27) admit a representation by diagrams. We
have demonstrated this already for s = 1, 2, and the general case is hardly more
difficult. Then, we use this knowledge to formulate similar rules for ei(αj+θj).
Finally, terms of order (ld−1 ln g)N+1 or higher can be dropped on the way.

So, our first claim is the following statement: The θ(s)
j from Lemma 4.3 can

be calculated by evaluating certain graphs according to similar rules like the
ones given above. There are a number of differences: All graphs have exactly
one edge emanating from j, there is no factor eiαj attached to j, the factors cG
are different, the mi’s are summed over the range |mi| ≤ N , mi 6= 0, and there
may be graphs with more than N edges.

In fact, we know this already for s = 1, 2, and the proof of the general case
is by induction on s. By its definition, θ(s+1)

j is obtained by inserting θ
(s)
n on
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the right-hand side of (27). By induction hypothesis, θ(s)
n is a sum of many

terms each of which corresponds to a graph with certain parameters. We now
multiply out the right-hand side of (27) and only then take the various sums.
To prove our claim, it suffices to make the following observations: graphs are
multiplied together by attaching them to one another at the “initial” vertex j.
Similarly, multiplying a graph by am(j, n)eimαn , as in the second line of (27),
amounts to attaching this graph to the single-edge graph in such a way that the
final vertex of this single-edge graph and the initial vertex of the other graph
combine to one new vertex.

Also, we may restrict ourselves to graphs with at mostN edges and to param-
eters mi with

∑E
i=1 |mi| ≤ N . Indeed, since each edge carries a factor am(n, n′),

Lemma 4.2 implies that the omitted contributions are O((ld−1 ln g)N+1). Here,
the logarithmic factors come from the denominators of the bound of Lemma
4.2, when the vertex indices are summed over. Note also in this context that
summing over the mi’s is never dangerous because the restrictions |mi| ≤ N
imply that there is an a priori bound (depending on N only) on the number of
summands.

Next, we have that

ei(αj+θj) = eiαj
N∑
t=0

(iθ̃(N)
j )t

t!
+O((ld−1 ln g)N+1).

The tilde on the right-hand side indicates the omission of higher order terms, as
discussed in the preceding paragraph. Again, the task is to multiply this out.
The θ̃(N)

j have graphical representations, as we have just seen, and the above
remarks about multiplying together different graphs are still relevant here. The
asserted rules follow from this. The additional factor eiαj has simply been
attached to the vertex j.

Note also that the same graph may arise many times when the process of
multiplying out is performed, but then we can simply combine these contribu-
tions to a single one. This will only affect the numbers cG(m1, . . . ,mE).

6 Bounds along a random trajectory

This last part of the proof of Theorem 3.1 deals with the problem of bounding
f(α)− f̂0 along trajectories α = α0 + νx, given the information obtained in the
preceding section. First of all, recall from (17) that

f(α) = E0 + 2
g∑
j=1

lj cosψj = E0 + 2 Re
g∑
j=1

lje
i(αj+θj). (30)

We will first convince ourselves that f is of the form

f(α) = f̂0 +
∑′

|m|1≤N+1
b(m) sin(m · α+ ϕm) +O(lg(ld−1 ln g)N+1). (31)
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We use a slightly different notation in this section in that now m = (m1, . . . ,mg)
with mi ∈ Z. Also, |m|1 =

∑
|mi| and m · α =

∑
miαi; finally, the prime at

the sum sign now means omission of the summand with m = (0, . . . , 0).
To prove (31), use (30) and think of the exponentials ei(αj+θj) as being

evaluated according to the Feynman rules. Then α-dependent factors come
in only through the vertices of the graphs; more precisely, vertices contribute
factors of the form eimαn (or eimαn − 1 if the vertex is final), where m is the
index of the incoming edge. The vertex j always contributes a factor eiαj , so
each graph is a sum of α-independent factors times an exponential of the form
exp(i(αj +

∑
miαni)). Since rule 4 imposes the restriction

∑
|mi| ≤ N , a

rearrangement of terms gives (31), as asserted.
Clearly, this argument has not only established (31), but it has also indicated

how the coefficients b(m) can be computed, at least in principle, using the graphs
introduced in Sect. 5. This will become very important in a moment. (Just
proving (31) is easy and does not require the Feynman rules.)

To prove Theorem 3.1, we need to estimate the second term on the right-
hand side of (31). Call this sum fN (α). The main step will be to prove the
following estimate. Given Lemma 6.1, we will then be able to apply the methods
of [23].

Lemma 6.1 There is a constant C, so that for every λ ∈ R,∫
Tg

eλfN (α) dα

(2π)g
≤ eCλ

2l2g.

Remark. Our “definition” of fN is not quite complete, since (31) does not
uniquely determine fN , given f . Lemma 6.1 really asserts that for some fixed
choice of fN , consistent with (31), the stated estimate holds. More precisely,
fN is obtained by going from (30) to (31) in exactly the way described above.
The following proof will also clarify this.

Proof. We will further decompose fN and then analyze the individual terms
separately. To this end, we first introduce equivalence classes of indices m.
Namely, we say that m and m′ are equivalent if they have the same non-zero
entries, taking the order into account. To put this into more formal language,
write

m = (0, . . . , 0, k1, 0, . . . , 0, k2, 0, . . . , 0, kr, 0, . . . , 0),

with r ∈ N and ki 6= 0 for all i = 1, . . . , r. Then m and m′ are equivalent
precisely if r = r′ and ki = k′i for all i.

This definition may not look very useful at first sight, but recall that N
(which bounds the `1-norm of m) is fixed while g (which is the length of the
vectors m) is typically large, so the vectors m indeed have only relatively few
non-zero entries.

The number of equivalence classes in the set of indices {m ∈ Zg : |m|1 ≤
N + 1} only depends on N , but not on g. (Note, however, that the cardinality
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of the equivalence classes themselves does go to infinity as g increases.) Now fix
an equivalence class (m0) and consider∑

m∈(m0)

b(m) sin(m · α+ ϕm).

Denote the positions of the non-zero entries ki of m ∈ (m0) by ni. Then, if we
vary the ni’s (respecting the obvious restrictions 1 ≤ n1 < n2 < · · · < nr ≤ g),
but keep r and the ki’s fixed, we get exactly all elements of the equivalence class
under consideration. Thus the above sum is equal to∑

1≤n1<···<nr≤g

b(m) sin (k1αn1 + · · ·+ krαnr + ϕm) . (32)

In this formula, m is defined by mni = ki and mi = 0 otherwise.
Using the addition laws for sine and cosine r− 1 times, we can write (32) as

a sum of 2r−1 terms of the form∑
1≤n1<···<nr≤g

b(m) sin(k1αn1 + γ1) · · · sin(krαnr + γr), (33)

Here, the dependence of the phases γi on the index m has not been made explicit
because the precise values of the γi’s will not matter anyway. (On top of that,
we of course have a lot of freedom in the choice of the γi’s, given ϕm from (32).)

Since r ≤ N + 1, we still have a universal bound (depending on N only) on
the number of different sums of the form (33) that arise in the decomposition
of fN just performed. Fix such a sum and call it F = F (α1, . . . , αg) for easier
reference.

It suffices to establish the lemma with F in place of fN . Indeed, if this
is proved, then, since fN =

∑
F with an a priori bound on the number of

summands F , the claimed estimate follows from Hölder’s inequality.
Now, to bound

∫
eλF , we first do the integration with respect to the last

variable αg. The sum defining F contains many terms that do not depend on
αg. More precisely, we have that

F (α1, . . . , αg) = F1(α1, . . . , αg−1) sin(krαg + γr) + F2(α1, . . . , αg−1),

with

F1 =
∑

1≤n1<...<nr−1≤g−1
nr=g

b(m) sin(k1αn1 + γ1) · · · sin(kr−1αnr−1 + γr−1),

F2 =
∑

1≤n1<...<nr≤g−1

b(m) sin(k1αn1 + γ1) · · · sin(krαnr + γr).

So, we now have to evaluate (2π)−1
∫ 2π

0
exp[λF1 sin(krα+ γr)] dα. The sub-

stitution β = krα+ γr together with the computation∫ 2π

0

ec sin β dβ

2π
=
∞∑
n=0

cn

n!

∫ 2π

0

sinn β
dβ

2π
=
∞∑
n=0

(c/2)2n

(2n)!

(
2n
n

)
≤ ec

2/4
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show that ∫ 2π

0

eλF
dαg
2π

= eλF2

∫ 2π

0

eλF1 sin(krαg+γr) dαg
2π

≤ eλF2 exp
(
λ2

4

(∑
|b(m)|

)2
)
, (34)

where the sum is over 1 ≤ n1 < . . . < nr−1 ≤ g − 1, and nr = g. We now
estimate this sum

∑
|b(m)|. By the discussion following (31), the coefficients

b(m) can be obtained with the help of the Feynman rules of the preceding
section by collecting those contributions which depend on α in exactly the way
described by m. (More precisely, collect everything that comes with a factor
eim·α, multiply by the corresponding lj ’s, and then take the real part and read
off b(m).) By the triangle inequality, we can estimate

∑
|b(m)| by bounding the

individual contributions associated with certain fixed graphs with fixed labelings
and then taking the various sums at the very end.

So, fix a graph that contributes to some b(m) occuring in the sum
∑
|b(m)|.

To avoid confusion with the numbers mi, ni introduced in this section, the pa-
rameters labeling the edges and vertices of the graph will now be called m′i
and n′i, respectively. Since the factors eim

′αn′ are attached to the vertices of
the graph and since the m’s under consideration have r non-zero entries, the
graph fixed above must have at least r vertices and hence at least E ≥ r − 1
edges. Moreover, since nr is set equal to g in the sum

∑
|b(m)| we are trying to

estimate, at least one vertex of the graph must have its parameter equal to g.
In other words, j = g or n′i = g for some i. (There is the additional restriction
that

∑
|m′i| ≥

∑r
i=1 |ki| − 1, but this will not be used.)

Armed with these observations, we are now ready to do the estimates. By the
Feynman rules, the contribution coming from the fixed graph admits a bound
of the form

Cl
∣∣am′1(. . . ) · · · am′E (. . . )

∣∣ (35)

if the parameters j, n′1, . . . , n
′
E ,m

′
1, . . . ,m

′
E are all kept fixed. The factor l

allows for the fact that the lj ’s from (30) have been absorbed by the b(m)’s
when passing to (31). The arguments of the factors am′i depend on the particular
form of the graph and also on the way the graph was labeled. Note that the
(unknown) factors cG from rule 3 can be absorbed by C because there are
only finitely many different values of cG(m′1, . . . ,m

′
E) and we can thus simply

estimate these numbers by their maximum.
We now use Lemma 4.2 to estimate (35), and we want to sum these bounds

over those values of the parameters j, n′i,m
′
i which satisfy the restrictions ob-

tained above. (In contrast to the rules from Sect. 5, there is now a sum over
j = 1, . . . , g also; this is simply the sum from (30).) In particular, j or one of
the n′i’s is held fixed (equal to g). This implies that we can sum over the indices
of the remaining vertices in the following way: First of all, delete the vertex cor-
responding to the fixed index. From the remaining graph, pick a vertex which
is connected to just one edge and perform the corresponding sum n′i = 1, . . . , g.
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By the choice of the vertex, n′i appears in precisely one of the factors am′i as
the argument. The denominator of the bound of Lemma 4.2 thus yields a fac-
tor . ln g when summed in the way just described. As a reminder that the
corresponding sum has been performed, delete the chosen vertex together with
the edge connected to it. Then repeat the whole procedure with the modified
graph to determine the next index to be summed over. Again, just one am′i is
involved in the sum, and thus another factor . ln g results. Since at each stage,
there are equally many vertices and edges, this process can only stop after the
whole graph has disappeared. There are only E + 1 ≤ N + 1 possible choices
for the vertex whose parameter is set equal to g, so the net result is that after
summation over the vertices, (35) can be estimated by

Cl(l/d)|m
′
1|+···+|m

′
E |(ln g)E . (36)

Indeed, the numerators from Lemma 4.2 contribute the factor (l/d)|m
′
1|+···+|m

′
E |,

and by the argument just given, each of the E sums over the vertices accounts
for a factor ln g.

We can further estimate (36). By rule 4, m′i 6= 0 for all i = 1, . . . , E, hence∑
|m′i| ≥ E; since E ≥ 0, we can thus can bound (36) simply by Cl.
Now the rest is easy. First of all, each of the at most N parameters m′i has

values in ±1, . . . ,±N , so summing over the m′i’s just increases the constant C
(by at most a factor (2N)N ). Then, the total number of graphs also depends
on N only, so we can finally sum over those graphs which could in principle
contribute to

∑
|b(m)|, and we still have the bound Cl (again, with a possibly

larger constant C).
Returning to (34) now, we have thus proved that∫

Tg

eλF (α) dα

(2π)g
≤ eCλ

2l2
∫
Tg−1

eλF2(α′) dα′

(2π)g−1
,

where α = (α1, . . . , αg) and α′ = (α1, . . . , αg−1). The integral on the right-
hand side has the same structure as the original one, except that g has been
replaced by g−1. We can therefore repeat the whole argument; the second step
would be to carry out the integration with respect to αg−1 in the same way as
discussed above. We need at most g steps to do the integral completely, and
at each step, we get a factor exp(Cλ2l2). As a result, we obtain the estimate
(2π)−g

∫
eλF ≤ eCλ2l2g, and, as already explained, the lemma follows. �

Remarks. 1. The key point of this proof was the observation that the sum-
mation over the vertices only gives logarithmic factors (ln g)E , but no powers
of g. Note that to establish this, in turn, we only used some structural infor-
mation contained in the Feynman rules and Lemma 4.2; the precise form of the
underlying iteration was largely irrelevant.

2. The estimate Cl on (36) is of course crude unless we are in the extreme
case E = 0 (which, it turns out now, gives the dominant contributions to fN ).
Indeed, to prove the extension of Theorem 3.1 mentioned in the beginning of
the Introduction and in Sect. 3, one has to keep (36) as it stands.
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We are now ready to finish the proof of Theorem 3.1. This final part of the
argument uses methods developed in [23]. We will follow the presentation given
in [12, Chapter 6]. We want to bound fN along a trajectory φxα = α+ νx. So,
let

M(α) = max
0≤x≤L

|fN (α+ νx)| .

To run the argument from [12, 23], we need a bound on (d/dx)fN (φxα). Write
fN as a sum of terms of the form (33), as in the proof of Lemma 6.1, and fix
again one of the summands F . Then, by the argument presented in that proof,
the sum over the corresponding coefficients b(m) satisfies∑

1≤n1<...<nr≤g

|b(m)| ≤ Cgl

Indeed, to show this, it just remains to sum the bound Cl also over the vertex
index that had been fixed, and this gives an additional factor g. Since

d

dx
F (α+ νx) =

∑
b(m)

r∑
j=1

kjνnj cos(kj(αnj + νnjx) + γj)
∏

j
,

where
∏
j is short-hand for the product of sines with the jth factor omitted, it

now follows that ∣∣∣∣ ddxF (α+ νx)
∣∣∣∣ ≤ C∑ |b(m)| ≤ Cgl.

Here we also used the fact the νn’s are bounded; this follows from Lemma 4.1
since νn = 4πcn. Summing the above bounds, we see that also |(d/dx)fN (φxα)| ≤
Cgl.

The maximum M(α) is attained at some point x0, and thus by the mean
value theorem, there is a constant C0 (as usual, depending only on C1, C2, and
N) together with an interval I = I(α) ⊂ [0, L] of length |I| = min{C0M(α)/(gl), L},
so that |fN (α+νx)| ≥M(α)/2 for all x ∈ I. We may assume that M(α) ≥ C−1

0 l
for all α ∈ Tg, since in the opposite case we have for free a better bound than
the one we are trying to prove. We then have that g|I| ≥ 1, and it follows that∫

Tg

eλM(α)/2 dα

(2π)g
≤ g

∫
Tg

|I(α)|eλM(α)/2 dα

(2π)g

≤ g
∫
Tg

dα

(2π)g

∫
I(α)

dx
(
eλfN (α+νx) + e−λfN (α+νx)

)
≤ g

∫ L

0

dx

∫
Tg

dα

(2π)g
(
eλfN (α+νx) + e−λfN (α+νx)

)
= gL

∫
Tg

dα

(2π)g
(
eλfN (α) + e−λfN (α)

)
≤ 2gLeCλ

2l2g.
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The last step is by Lemma 6.1. For λ > 0, we can write this inequality in the
form

E

(
exp

(
λ

2

[
M − 2Cλl2g − 2

λ
ln(4gL)

]))
≤ 1

2
,

with E(· · · ) denoting the expectation taken with respect to the probability
measure (2π)−gdα on the torus Tg. By a Chebyshev estimate, the inequality

M(α) ≤ 2Cλgl2 +
2
λ

ln(4gL)

holds with probability ≥ 1/2. The parameter λ > 0 is still at our disposal, the
optimal choice being

λ =
(

ln(4gL)
Cgl2

)1/2

.

Then the bound becomes

M(α) ≤ 4C1/2g1/2l (ln(4gL))1/2
,

and this holds for α’s from a set of (2π)−gdα measure at least 1/2. The proof
of Theorem 3.1 is complete. �

Moreover, by re-examining the reasoning of this section, we see that we can
also prove the more general result already mentioned. We can obtain a whole
series of pointwise approximations to Vα(x). More specifically, the difference
between f(φxα) and those terms of

∑
b(m) sin(m·φxα+ϕm) for which |m|1 ≤M

is

. g1/2l(ld−1 ln g)M (ln(gL))1/2 + gl(ld−1 ln g)N+1

for suitable α. In other words, the Fourier series of f (viewed as a function on the
Jacobi variety), up to some order, gives a very good pointwise approximation to
Vα(x) with positive probability (in fact, with as large probability as we please)
if α is chosen at random.

With M = 0, Theorem 3.1 is recovered. We do not need these more refined
statements to prove Theorem 1.1.

7 Proof of Theorem 1.1

The basic idea of the construction of [21] was to glue together suitably chosen
periodic potentials. In this paper, we will instead use finite gap potentials with
gaps of equal length. Roughly speaking, the construction runs as follows. We
will choose the first finite gap potential V1 so that all gaps lie in, let us say, [1, 2].
V2 will have much smaller gaps; also, these new gaps will be contained in the
gaps of V1. If we continue in this way, the intersection over all n of the unions
of the gaps of Vn will be a Cantor type set whose dimension is easily controlled,
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provided there is an appropriate scaling. Moreover, the set S defined in (4)
will contain this Cantor type set because if the energy E is in a gap of Vn, the
solutions to the Schrödinger equation are on average exponentially increasing
or decreasing and hence do not satisfy (3). Of course, we must also take care
of the required decay of V (x), that is, Vn must be sufficiently small for large n.
The bounds on Vn will be established with the aid of Theorem 3.1.

We start by investigating the solutions of (1) for finite gap potentials V and
energies E which lie in some gap of V .

Lemma 7.1 Let V (x) be a finite gap potential whose parameters satisfy the
assumptions of Theorem 3.1. Then there exists an ε = ε(C1, C2, N) > 0 and a
constant C = C(C1, C2, N), such that for ld−1 ln g < ε, the following holds. If
|E −mn| ≤ ln/2 for some n ∈ {1, . . . , g}, then there is a solution y(x) of the
Schrödinger equation (1) with y(x0) = 1 for some x0 ∈ [0, 1] and∫ ∞

x0

|y(x)|2 dx ≤ C/ln.

Remark. This statement cannot, in general, hold with a fixed, prescribed x0

because the decaying solution has zeros. Roughly speaking, the lemma says
that there is a solution which has some decay over intervals of length � l−1

n .
Proof. Our starting point is the following formula (see, for example, [4,

Chapter 9]): ∫ ∞
x

|f(t, z)|2 dt =
Im mx(z)

Im z
. (37)

Here, mx is the m-function of −d2/dt2 +V (t) on [x,∞) with Dirichlet boundary
conditions at t = x. More specifically, let u, v be the solutions of −y′′+V y = zy
with the initial values u(x, z) = v′(x, z) = 1, u′(x, z) = v(x, z) = 0 and write

f(t, z) = u(t, z) +mx(z)v(t, z);

then mx(z) is defined by requiring that f ∈ L2(x,∞).
The Green function of the whole line problem is related to the m-function

by G(x, x; z) = (m−x (z)−mx(z))−1, where m−x is the m-function of the operator
on L2(−∞, x) (see again [4]). Since the imaginary parts of m−x and mx have
opposite signs, the right-hand side of (37) is less than −Im G(x, x; z)−1/Im z.
So, if we use (10) and abbreviate

∏
(µj(x)− z) = Ux(z), then (37) becomes∫ ∞

x

|f(t, z)|2 dt < − 2
Im z

Im
R(z)
Ux(z)

. (38)

Here, the sign of R(z) is determined by the fact that Im G(x, x; z) has the same
sign as Im z for Im z 6= 0 (compare the discussion following (10)).

Now let E be as in the hypothesis, and put z = E + iδ with δ > 0. By
slightly changing x if necessary, we may assume that µn(x) 6= E. Then E
is not in the spectrum of the operator on L2(x,∞) with Dirichlet boundary
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conditions. This is so simply because µn(x) is the only eigenvalue in the gap
(E2n−1, E2n). Thus mx(z) and R(z)/Ux(z) are holomorphic in a neighborhood
of z = E. For this latter function, this may of course be seen by direct inspection.
Moreover, R(E)/Ux(E) is real. Therefore, the right-hand side of (38) converges
to −2(R/Ux)′(E) as δ → 0+, while the function f(t, E + iδ) tends to f(t, E) =
u(t, E) +mx(E)v(t, E). Fatou’s Lemma together with (38) imply∫ ∞

x

|f(t, E)|2 dt ≤ −2
d

dz

(
R

Ux

)
(E).

We have that f(x,E) = 1, so it remains to evaluate (R/Ux)′(E). To this end,
note that(

ln
R

Ux

)′
(E) =

1
2(E − E0)

+
g∑
j=1

(
1

µj(x)− E
− 1

2(E2j−1 − E)
− 1

2(E2j − E)

)
.

Estimating as in the proof of Lemma 4.1, we see that∑
j 6=n

∣∣∣∣ 1
µj(x)− E

− 1
2(E2j−1 − E)

− 1
2(E2j − E)

∣∣∣∣ . ld−2.

Furthermore, the term with j = n can be bounded by C/|µn(x) − E|. Since
this is & l−1

n which is much larger than ld−2, we can in fact estimate the whole
logarithmic derivative by C/|µn(x)− E|. Finally, similar arguments show that
|(R/Ux)(E)| . ln/|µn(x)− E|, so we conclude that∫ ∞

x

|f(t, E)|2 dt ≤ Cln
(µn(x)− E)2

.

The proof is finished by observing that µn(x) moves by an amount & ln if x
varies over an interval of length one. Indeed, if we again use the variables ψj
(see (13), (14)), then the ψj ’s evolve according to the differential equations

dψn
dx

=
2iRn(mn − ln cosψn)∏

j 6=n(mj −mn − lj cosψj + ln cosψn)
,

and the right-hand sides are ≈ 1, independently of the positions the ψj(x)’s. �
Now let a1 = 0, an+1 = an + Ln, where Ln > 0 will be chosen later. Then

V will be of the form

V (x) =
∞∑
n=1

χ(an,an+1)(x)Vn(x− an);

the building blocks Vn are finite gap potentials.
We now pick these Vn’s. We basically keep the notation of the preceding

sections, except that there is now an additional index n. The gaps of Vn are
taken to be of equal length ln, and gn denotes the number of gaps of Vn. Let
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α ∈ (1/2, 1) be the exponent from (2) (if α = 1, there is nothing to prove). We
abbreviate 2(1− α) = D, so D ∈ (0, 1), and D is the dimension the set S from
(4) must have. Fix a number a > (1−D)−1 and put

ln = exp(−an).

A Cantor type set with gn intervals of length ln as its nth approximation has
dimension D if there is a scaling of the type gnlDn ∼ 1. This suggests to take gn ∼
exp(Dan), but for technical reasons, the actual definition is slightly different.
First of all, choose a sequence εn > 0 which tends to zero, but so slowly that
εna

n− εn−1a
n−1 →∞ and an exp(−εnan)→ 0. (In fact, we could take εn = qn

with a−1 < q < 1 right away, but if we leave εn unspecified, we can improve the
decay rate of V .) Now put gn0−1 = 1, where n0 ∈ N must be sufficiently large
(this will be made precise below), and then define inductively for n ≥ n0

gn = exp ((D − εn)an) + θngn−1.

Here, we require that gn/gn−1 ∈ N, and this determines θn ∈ [0, 1) uniquely.
The parameter dn describes the spacing between adjacent gaps of Vn. Since

we want these gaps to lie in some gap of Vn−1, we get gn . gn−1ln−1/dn. If
we disregard the εn’s and θn’s for the moment and take dn about as large as
possible, this motivates the choice

dn = exp
(
(−D + (D − 1)a−1)an

)
.

A computation then shows that lnd−1
n ln gn → 0, so Theorem 3.1 can indeed be

used to bound Vn for sufficiently large n. Finally, Lemma 7.1 suggests that we
put Ln = A/ln, with a large constant A (how large A has to be will become
clear later on).

It remains to choose the locations of the gaps, that is, we must pick, for each
n, the parameters E(n)

0 < mn(1) < · · · < mn(gn). Let Gn0−1 = [1, 2], say (any
compact subinterval of (0,∞) will do). For the time being, set E(n0)

0 = 0.
Pick gn0 different centers mn0(1) < · · · < mn0(gn0) that lie well inside [1, 2]

and satisfy

min
k

(mn0(k)−mn0(k − 1)) ≥ dn0 .

By the first requirement we mean that |mn0(k) − 3/2| ≤ 1/4 for all k =
1, . . . , gn0 . Since dn0gn0 → 0 as n0 → ∞, this can certainly be done, provided
n0 is large enough.

Let Gn0 be the union of (the middle halves of) the corresponding gaps:

Gn0 =
gn0⋃
k=1

[mn0(k)− ln0/2,mn0(k) + ln0/2] . (39)

The general step is similar. Suppose Gn−1 has been constructed for some
n ≥ n0 + 1. More specifically, Gn−1 is then a union of (half the) gaps of Vn−1.
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For every such interval [mn−1(j) − ln−1/2,mn−1(j) + ln−1/2] ⊂ Gn−1, pick
gn/gn−1 centers mn(k) with |mn(k)−mn−1(j)| ≤ ln−1/4, and also so that the
mn(k) are separated from one another by a distance ≥ dn, Again, mn(k)’s with
these properties exist in sufficiently large supply: Indeed, we can find ≈ ln−1/dn
centers mn(k) with the required properties in each subinterval of Gn−1. On the
other hand, by our assumptions on the sequence εn, the desired number of
centers gn/gn−1 = (ln−1/dn)eεn−1a

n−1−εnan + θn is much smaller than ln−1/dn
for all n ≥ n0 + 1, provided n0 is large enough. So the construction is possible.
We then get a total of (gn/gn−1)gn−1 = gn new gaps, and we would like to
define Gn as the union of these gaps, as in (39).

Unfortunately, there is an additional complication: If we proceed as above,
we have no control on f̂0, so the bound of Theorem 3.1 is useless. The problem
is that we have not renormalized correctly. So it is necessary to also adjust E(n)

0 .
We will add E

(n)
0 to all the previously chosen centers mn(k) (k = 1, . . . , gn),

while keeping the gap length ln fixed. This just amounts to adding E
(n)
0 to

the function f(α). In particular, the original mean value f̂0 will be replaced by
f̂0 + E

(n)
0 .

Now (30) implies that (for E(n)
0 = 0) f̂0 = O(gnln), so for a suitable E(n)

0 =
O(gnln), we have f̂0 = 0, as desired. On the other hand, since we were cautious
enough to take the gaps of Vn well inside the gaps of Vn−1, the new centers
E

(n)
0 + mn(k) will still satisfy, let us say, |E(n)

0 + mn(k) −mn−1(j)| ≤ ln−1/3.
This follows from the fact that the shift E(n)

0 = O(gnln) is much smaller than
ln−1 for large n (here we use the inequality a > (1−D)−1).

Once E(n)
0 has been picked, Gn can again be defined as in (39), but with the

shifted centers E(n)
0 +mn(k) taking the role of mn(k).

This two step procedure (first choose mn(k)’s, then shift by an appropriate
E

(n)
0 to make f̂0 = 0) can now be used to pick the mn(k)’s and E(n)

0 (inductively)
for all n ≥ n0. Note that the construction ensures that Gn ⊂ Gn−1.

We must still choose, for every n ≥ n0, a particular potential from the
corresponding family Vα0 of finite gap potentials. Fortunately, this choice is
easy: We fix once and for all a sufficiently large N ∈ N (where “sufficiently
large” will be made precise at the end of the proof) and then simply take a
Vn that satisfies the conclusion of Theorem 3.1 for L = Ln. Note also that
the assumptions of Theorem 3.1 on the location of the gaps (that is, C1 ≤
mn(k) − E(n)

0 ≤ C2 for all k = 1, . . . , gn) hold with n-independent constants
C1, C2 > 0 because E(n)

0 lies in a small interval centered at zero while all gaps
are in [1, 2]. Therefore, the constant C from the statement of Theorem 3.1 is
also independent of n.

Finally, for n < n0, we can take an arbitrary bounded (and measurable)
function as Vn; for instance, we can put Vn ≡ 0 for n < n0.

Let T =
⋂
nGn. We will now show that S ⊃ T , where S is the set defined

in (4). Suppose E ∈ T . Then E satisfies the assumptions of Lemma 7.1 for
the potentials V (x) = Vn(x) for all sufficiently large n. Assume, to obtain a
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contradiction, that E /∈ S. Then there is a solution y(x) of the form (3), and y, y
span the space of solutions of (1). In particular, the solution fn from Lemma
7.1 must be a linear combination of y and y, that is,

fn(x) = Ane
iω(x) +Bne

−iω(x) + rn(x), (40)

with ω(x) =
∫ x

0

√
E − V (t) dt and |rn(x)| ≤ (|An|+ |Bn|)ρ(x), where ρ(x)→ 0.

Of course, since V = Vn only on the interval (an, an+1), eq. (40) holds for
an ≤ x ≤ an+1. Lemma 7.1 shows that fn(x(n)

0 ) = 1 for some x(n)
0 ∈ [an, an+ 1]

and ∫ an+1

x
(n)
0

|fn(x)|2 dx ≤ C/ln (41)

for large values of n. We also take n so large that ρ(x) < δ for x ≥ an and
‖Vn‖∞ < δE, which clearly is possible since gnln → 0 (of course, Theorem 3.1
would give a better bound on Vn, but this is not needed here). Then, since
fn(x(n)

0 ) = 1, we must have that |An|+ |Bn| > (1+δ)−1. Now routine estimates
show that if δ > 0 was chosen sufficiently small, then (40) implies that∫ an+1

x
(n)
0

|fn(x)|2 dx ≥ C0Ln = AC0/ln.

This inequality contradicts (41) if A is sufficienctly large, so T ⊂ S, as claimed.
The next step is to prove that dimT = D. To this end, we introduce a Borel

measure µ that reflects the self-similar scaling structure of T . More specifically,
µ gives equal weight to the intervals of Gn for every n: µ(In) = g−1

n if In is
one of the intervals [mn(k) − ln/2,mn(k) + ln/2]. Moreover, we also demand
that µ be supported by T : µ(R \ T ) = 0. It is not hard to show (for instance,
by considering approximations µn supported by Gn) that there indeed exists a
unique Borel (probability) measure µ satisfying these requirements.

We will now establish the following property of the generalized derivatives
of µ: For every fixed γ < D, we have that

lim
δ→0+

sup
|I|≤δ

µ(I)
|I|γ

= 0. (42)

The supremum is over all intervals I ⊂ R of length at most δ.
If (42) holds, then, by general facts on Hausdorff measures [22, Section 3.4,

Theorem 67], µ gives zero weight to sets of dimension strictly less than D, and
therefore dimT ≥ D, as desired. The converse inequality dimT ≤ D does not
need explicit proof (although that would actually be easy to do) because we
know that always dimS ≤ 2(1− α) (this is the result whose optimality we are
about to prove), and thus dimT ≤ dimS ≤ D will follow automatically once
we have established that V (x) = O(x−α).

So let us prove (42): Fix γ, and let I be an interval with |I| ≤ δ, where
δ > 0 is small. Then, define n ∈ N by requiring that ln < |I| ≤ ln−1. Clearly,
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n is large if δ is small. We first treat the case when |I| ≤ dn. Recall that dn
is the minimal distance between adjacent gaps of Vn. So the above assumption
implies that I intersects at most two of the intervals that build up Gn. Each of
these intervals has measure g−1

n , hence

µ(I)
|I|γ

≤ 2
gn|I|γ

≤ 2
gnl

γ
n
.

On the other hand, if |I| > dn, then the number of subintervals of Gn
intersecting I is ≤ 3|I|/dn, thus in this case,

µ(I)
|I|γ

≤ 3|I|1−γ

dngn
≤ 3

gn−1ln−1

dngn

1
gn−1l

γ
n−1

.

Now gnl
γ
n & exp(σan), where σ > 0 depends on γ, and gn−1ln−1/(dngn) .

exp(εnan); indeed, relations of this type motivated our definition of gn and dn.
Since, as noted above, n→∞ as δ → 0+, (42) now follows.

It remains to show that V satisfies the bound (2). So, let x ∈ (an, an+1)
with large n. Recall that f̂0 = 0, where f is the function from the trace formula
for Vn. Theorem 3.1 therefore implies that

|V (x)| ≤ C
[
g1/2
n ln (ln(gnLn))1/2 + gnln(lnd−1

n ln gn)N+1
]

for these x. On the other hand,

x ≤ an+1 =
n∑

m=1

Lm .
n∑

m=1

l−1
m . l

−1
n ,

and (2) indeed follows, provided we took

N + 1 ≥ 1− α
2α− 1

a

a− 1
.

(As expected, N →∞ as α→ 1/2+.) �
Actually, doing these final estimates carefully, we obtain a stronger bound

of the form x−α−εn/2(lnx)1/2. The strengthening of Theorem 1.1 mentioned in
Sect. 1 follows from this by taking a sequence εn that tends to zero sufficiently
slowly.
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