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Abstract

We consider a slow-fading multicast channel with one T -antenna transmitter and K single-

antenna receivers with the goal of minimizing channel outage probability using quantized beam-

forming. Our focus is on a distributed limited feedback scenario where each receiver can only

quantize and send feedback information regarding its own receiving channels.

A classical result in point-to-point quantized beamforming is that a necessary and sufficient

condition for full diversity is to have ⌈log2 T ⌉ bits from the receiver. We first generalize this

result to multicast beamforming systems and show that a necessary and sufficient condition to

achieve full diversity for all receivers is to have ⌈log2 T ⌉ bits from each receiver. Also, for a two-

receiver system and with R feedback bits per receiver, we show that the outage performance

with quantized beamforming is within O(2− R
32T 2 )dBs to the performance with full channel state

information at the transmitter (CSIT). This constitutes, in the context of multicast channels, the

first example of a distributed limited feedback scheme whose performance can provably approach

the performance with full CSIT. Numerical simulations confirm our analytical findings.
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I. Introduction

Multicasting refers to the transmission of common information to several physically-

separated receivers. In the context of physical layer, a particularly well-investigated scenario

is the multiple-input single-output (MISO) multicast channel, where a T -antenna transmitter

wishes to communicate to K single-antenna receivers over fading channels [1]–[6]. In such

a scenario, when channel state information (CSI) is available to the transmitter, one can

maximize the overall performance (e.g., the ergodic capacity, or the outage probability)

using beamforming or precoding. The capacity limits of MISO multicast channels with such

CSI-adaptive transmission strategies have first been investigated in [1], where several scaling

results have been derived with different assumptions on T and K. Other work on the capacity

of multicast channels in the large system limit have studied the case of correlated channels

[2], and the performance of antenna subset selection [3].

Unlike a point-to-point MISO system where the optimal transmitter covariance matrix is

simply a beamformer along the channel direction, closed-form expressions for the optimal

covariance matrices or beamforming vectors are not known for a general MISO multicast

system. A significant amount of work thus also exists [4]–[6] on the numerical optimization of

multicast covariance matrices and beamforming vectors, with closed-form optimal solutions

being available for certain values of K and T [5]. In particular, it is known that beamforming

is optimal for K ≤ 3, or close to optimal when T is much larger than K [1], [5], [6].

Most of these previous studies assume that the transmitter has perfect knowledge of the

CSI. In fact, CSI at the transmitter (CSIT) can be acquired through feedback from the

receivers, each of which can acquire the knowledge of their own receiving channels through

transmitter training sequences. On the other hand, since the CSI can assume any value in

a multi-dimensional complex space, the assumption of perfect CSIT requires an “infinite

number of feedback bits” from every receiver. In practice, each receiver can communicate

only a finite number of bits per channel state as feedback information. A mathematical

formulation of such a limited feedback scenario leads to a distributed quantization problem

where each receiver quantizes only a part of the entire CSI.

A special case is a point-to-point MISO system with K = 1, where the distributed

quantization problem boils down to a simple point-to-point quantization problem and several

solutions are available [7]–[11]. However, very little work exists on the design of limited
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feedback schemes when K > 1. In [12], the authors study a scenario where only the channel

direction information is quantized with channel magnitude information still being perfectly

available at the transmitter (this would again require infinitely many receiver feedback

bits.). In [13], the performance of centralized (non-distributed) variable-length quantizers

have been analyzed. To the best of our knowledge, the first “true” distributed quantizers

for beamforming in multicast channels have been proposed in [14]. Although the quantizers

in [14] can provide full diversity, they do not do so in a rate-optimal manner, and cannot

provably approach the performance with full CSIT.

In this work, we consider outage-optimized distributed quantization of beamforming vec-

tors for a MISO multicast channel. We show how to construct distributed quantizers that

can achieve full diversity in a rate-optimal manner. For a two-receiver system, we also show

how to design distributed quantizers that can approach the performance with full CSIT.

Numerical simulations suggest that a similar result holds for more than two receivers, but

a formal proof remains elusive.

The rest of this paper is organized as follows. In Section II, we introduce the system model

and the distributed quantizers. In Section III, we construct rate-optimal distributed quan-

tizers that can provide full diversity. In Section IV, we design quantizers that can approach

the performance with full CSIT. Finally, in Section V, we draw our main conclusions.

Notation: Cm×n is the set of all m × n complex matrices with CT ≜ CT ×1, C ≜ C1. ℜ(·)

and ℑ(·) are the real and imaginary parts of a complex number, respectively. 0m×n is the

m × n all zero matrix. loga is the base-a logarithm; log ≜ loge. ∥ · ∥ is the Euclidean norm,

∥ · ∥1 is the matrix 1-norm, ∥ · ∥2 is the matrix 2-norm, and |⟨·, ·⟩| is the inner product.

Depending on the context, | · | is the norm of a complex number or the cardinality of a set.

⌈·⌉ is the ceiling function. For a set A, Ak is its kth Cartesian power. For a logical statement

S, we let 1(S) = 1 if S is true, and otherwise, we let 1(S) = 0.

II. Preliminaries

A. System Model

We consider a slow-fading MISO multicast channel with one transmitter with T antennas

and K single-antenna receivers. Denote the channel from Transmitter Antenna t to Receiver

k (t ∈ {1, . . . , T} and k ∈ {1, . . . , K}) as htk ∈ C. Also, let hk ≜ [h1k · · · hT k]T ∈ CT ×1 and
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h ≜ [h1 · · · hK ] ∈ CT ×K denote the channels from the transmitter to Receiver k, and the

entire channel state, respectively. We assume that Receiver k knows the vector hk of its own

receiving channels perfectly.

Let s ∈ C denote the information-bearing symbol that we wish to multicast to the

receivers. For a given channel state h, the transmitter sends sx†
√

P over its T antennas,

where P is the transmitter short-term power constraint, x ∈ X is a beamforming vector,

and X ≜ {x ∈ CT ×1 : ∥x∥ = 1} is the set of all beamforming vectors. The channel

input-output relationships are yk = s⟨hk, x⟩
√

P + ηk, k = 1, . . . , K, where yk ∈ C and

ηk ∈ C are the received signal and the noise at Receiver k, respectively. We assume that

η1, . . . , ηK , h11, . . . , hT K are independent circularly-symmetric complex Gaussian random

variables with variance 1.

The signal-to-noise ratio (SNR) at Receiver k can be calculated to be |⟨x, hk⟩|2P . We

refer to the quantity γ(x, h) ≜ mink |⟨x, hk⟩|2P as the “network SNR.” For a fixed h and x,

the capacity of the multicast channel as defined above is then log2(1 + γ(x, h)) bits/sec/Hz.

Without loss of generality, we set the target data transmission rate to be 1 bit/sec/Hz, in

which case an outage occurs if γ(x, h) < 1.

When h is random, we consider a general scenario where the transmitter can utilize

different beamforming vectors for different channel states. For this purpose, consider an

arbitrary mapping M : CT ×K → X , and suppose that the transmitter uses the beamforming

vector M(h) for a given h. We define the outage probability with M as out(M) ≜ P(γ(M(h), h) <

1). We also let d(M) ≜ limP →∞ − log out(M)
log P

denote the diversity gain with M, provided that the

limit exists.

B. The Full-CSIT System

If the transmitter somehow knows the entire channel state h perfectly, we say that we have

a “full-CSIT system.” In such a scenario, the transmitter can utilize an optimal beamforming

vector, say F(h), for a given h, so as to minimize the outage probability. It should be clear

that the minimum-possible outage probability can be reached by maximizing the network

SNR for every channel state. Hence, we define the corresponding full-CSIT mapping F as

F(h) ≜ arg max
x∈X

γ(x, h) = arg max
x∈X

min
k

|⟨x, hk⟩|2, (1)
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with ties broken arbitrarily. For K = 1, we have a point-to-point MISO system where the

optimal transmission strategy is simply beamforming along the direction of the sole channel

state h1. We may thus set F(h) = h1
∥h1∥ = h

∥h∥ when K = 1. The first non-trivial case is

when K = 2, for which a solution has been provided in [5]. No closed-form expression for

F(h) is known for K ≥ 3, although numerical solution methods are available [4]. Moreover,

no closed-form expression is known for the resulting minimum-possible outage probability

out(F) unless we have the trivial case K = 1. However, it is straightforward to at least show

that d(F) = T for any K; for completeness, a proof will be provided later on.

C. Partial CSIT Systems via Distributed Limited Feedback

As evident from (1), the calculation of the optimal beamforming vector requires the

knowledge of the entire channel state h. On the other hand, none of the terminals in the

network can acquire h in its entirety. In fact, Receiver k can only acquire its own local

channel states hk via transmitter training. To calculate F(h), the K parts h1, . . . , hK of

the channel state h should be available to the transmitter, which would require an “infinite

rate of feedback” from all of the K receivers. Therefore, while a full-CSIT system provides

the best possible performance, it is very difficult, if not impossible, to realize in a practical

system.

We thus wish to design practical limited feedback schemes that can provably achieve, or at

least approach, the performance with full CSIT. For this purpose, we consider a distributed

limited feedback scenario that operates as follows: Given channel state h, for every k ∈

{1, . . . , K}, Receiver k quantizes only its own local channel state hk and broadcasts the

corresponding feedback bits. At this stage, one can imagine that there are K feedback

messages “on the air,” with each message corresponding to each one of the receivers. We

assume that the transmitter and the receivers acquire these K feedback messages without

any errors or delays. The K feedback messages are jointly decoded at all the terminals to

reproduce a common quantized beamforming vector, say, y that depends on the feedback

messages (Each terminal uses the same decoder, and thus each terminal obtains the same

vector y.). Finally, the transmitter begins data transmission via y. The receivers can decode

the transmitted symbols as they know y and their own receiving channels.

Given n ∈ N, let Bn denote the set of all binary codewords of length n (e.g., B2 =
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{00, 01, 10, 11}.). Also, suppose Receiver k sends bk bits of feedback for every channel state.

We can then formalize the above distributed limited feedback scenario via a distributed

channel quantizer Q : CT ×K → X , which is uniquely specified by K encoders Ek : CT →

Bbk
, k = 1, . . . , K, with the kth encoder Ek available at the kth receiver, and a unique

decoder D : ∏K
k=1 Bbk

→ X that is available at all terminals. Given h, the feedback message

of Receiver k is Ek(hk). The K messages E1(h1), . . . , EK(hK) are jointly decoded at all

the receivers and the transmitter to reproduce the quantized beamforming vector Q(h) ≜
D(E1(h1), . . . , EK(hK)). We refer to the set {Q(h) : h ∈ CT ×K} as the quantizer codebook.

The distributed quantizer Q thus describes a mapping from the set of channel states to a

set of beamforming vectors. In fact, it is a special case of the general mapping M as described

in Section II-A. The outage probability with Q is thus out(Q) = P(γ(Q(h), h) < 1), which is

achieved with a feedback rate of Rk(Q) ≜ bk bits per channel state at the kth receiver.

The adjective “distributed” signifies that there are potentially many (K > 1) non-commun-

icating quantizer encoders each of which quantizes only a part of the entire CSI. Note that

in the special case of K = 1, we have a “non-distributed” quantizer with a single quantizer

encoder at the sole receiver and a quantizer decoder at the transmitter. To gain initial insight

on the problem of designing distributed quantizers, we discuss the existing non-distributed

quantizer design methodology for K = 1, and show why the same design ideas cannot

immediately be applied to the case of K > 1.

D. Non-Distributed vs. Distributed Quantization

For any given compact set (a codebook of beamforming vectors) C ⊂ X , let

M⋆
C(h) ≜ arg max

x∈C
γ(x, h). (2)

It can be shown that M⋆
C(h) is an optimal mapping for codebook C in the sense that for any

other mapping M : CT ×K → C, we have out(M⋆
C) ≤ out(M).

In a point-to-point system (K = 1), the mapping (2) can easily be realized with limited

feedback: The sole receiver can determine the SNR-maximizing beamforming vector M⋆
C(h) in

C, and feed back ⌈log2 |C|⌉ bits that can uniquely represent M⋆
C(h). Using these feedback bits,

the transmitter can recover and transmit via the beamforming vector M⋆
C(h). Therefore, when

K = 1, it is clear how to optimally design the quantizer encoding and decoding functions
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for a given codebook. The problem of designing a good quantizer boils down to the design

of good codebooks, and several constructions (e.g., Grassmannian codebooks) are available.

On the other hand, in a multicast network with more than one receiver (K > 1), none

of the receivers can, by itself, determine the beamforming vector M⋆
C(h) that provides the

highest network SNR. This is because the network SNR γ(x, h) = mink |⟨x, hk⟩|2P provided

by a given beamforming vector x ∈ C, depends in general on all the KT channels from

the transmitter to the K receivers. Therefore, when K > 1, for a general codebook C, it is

not immediately clear how to implement the optimal mapping in (2), or whether such an

implementation is even possible.

The absence of a rate-limited distributed implementation of (2) is a fundamental difficulty

in designing structured distributed quantizers. Our general quantizer design strategy is thus

to forget about picking the best beamforming vector, and instead focus on not picking

the worst beamforming vector(s) in a given codebook. For an optimal execution of this

design strategy, we also take into account the specific performance measure at hand and the

corresponding performance goal.

We first show how to achieve the full-CSIT diversity gain d(F) using distributed limited

feedback. Before proceeding, it is worth mentioning that one can achieve full diversity by

transmitting independent complex Gaussian symbols over each antenna (without the need of

any feedback) instead of the rank-1 beamforming strategy that we consider in this paper. The

advantage of beamforming is that it provides the opportunity of using the already-available

point-to-point codes for Gaussian channels for simpler encoding/decoding of data.

III. Diversity Gains of Distributed Quantizers

In this section, we design distributed quantizers that can achieve the full-CSIT diversity

gain T . For a point-to-point MISO system with beamforming, it is a well-known fact that a

necessary and sufficient condition to achieve full diversity is to have ⌈log2 T ⌉ feedback bits

from the receiver [8]. Here, we generalize this result to the multicast setting by showing that

a necessary and sufficient condition to achieve the full-diversity gain T is to have ⌈log2 T ⌉

feedback bits from every receiver.

Let us first verify that indeed we have d(F) = T for any K. Let et ≜ [01×(t−1) 1 01×T −t], t =

1, . . . , T denote the antenna selection vectors, and E ≜ {e1, . . . , eT } represent their codebook.
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Proposition 1. For any K, we have d(F) = T .

Proof. For any x and h, we have γ(x, h) = mink |⟨x, hk⟩|2P ≤ mink ∥hk∥2P ≤ ∥h1∥2P .

Hence, γ(F(h), h) ≤ ∥h1∥2P . This final upper bound provides a diversity gain of T , which

implies d(F) ≤ T . On the other hand, we have γ(F(h), h) = maxx∈X mink |⟨x, hk⟩|2P ≥

maxx∈E mink |⟨x, hk⟩|2P = maxt mink |⟨et, hk⟩|2P = maxt mink |hkt|2P . Since the random

variables mink |hkt|2P, t = 1, . . . , T are independent with each providing a diversity gain of

1, their maximum provides a diversity gain of T . Hence, d(F) ≥ T . Combining this with the

inequality d(F) ≤ T we have already proved, we obtain d(F) = T , as desired.

The proof of Proposition 1 above also suggests the following possible strategy for the

construction of a quantizer that can achieve full diversity: If one can select the best antenna

with the highest network SNR for every channel state, then one can achieve full diversity.

This is, however, equivalent to using the mapping M⋆
E , which does not admit a distributed

implementation as discussed in Section II-D. In order to design a distributed quantizer that

achieves full diversity, we recall our general design strategy (see Section II-D): Instead of

trying to pick the best beamforming vector in a given codebook (such as E), we shall instead

focus on not picking the worst beamforming vector(s) in a given codebook.

For this purpose, for any given n ≥ T , let Cn ≜ {x1, . . . , xn} ⊂ X be an arbitrary set of

beamforming vectors such that for any n ≥ T , any T of the vectors in Cn (chosen without

repetition) are linearly independent.1 For example, for T = 2, n = 3, and C3 = {x1, x2, x3},

(i) the vectors x1 and x2 should be linearly independent, (ii) the vectors x1 and x3 should

be linearly independent, and (iii) the vectors x2 and x3 should be linearly independent.

Consider now a MISO system where K = 1. For any given h ∈ CT and n ≥ T , the vectors

in Cn can be ordered from the worst to the best in terms of the SNR provided by each. In

other words, we have |⟨xi1 , h1⟩|2P ≤ · · · ≤ |⟨xin , h1⟩|2P for some i1, . . . , in with {i1, . . . , in} =

{1, . . . , n}. Note that the ordering indices i1, . . . , in depend on the channel state h = h1.

We consider the mapping Wn(h1) ≜ xiT
that chooses the “T th worst” beamforming vector

1The following argument guarantees the existence of such codebooks for any n ≥ T : Let the random vectors

u1, . . . , un be independent and uniformly distributed on X . Let p be the probability that there are T vectors in

{u1, . . . , un} which are not linearly independent. It is sufficient to show p = 0. For this purpose, let p′ be the

probability that the T vectors u1, . . . , uT are not linearly independent. We have p′ = 0. By a union bound, we obtain

p ≤
(

n
T

)
p′ = 0, which means p = 0.
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in Cn. For example, for T = 2, n = 4, and C4 = {x1, x2, x3, x4}, suppose that |⟨x3, h′⟩|2 ≤

|⟨x1, h′⟩|2 ≤ |⟨x2, h′⟩|2 ≤ |⟨x4, h′⟩|2 for some h′ ∈ C2. Then, we have W4(h′) = x1.

The mapping Wn just avoids the T − 1 worst beamforming vectors in Cn. We now show

that it provides full diversity.

Proposition 2. Let K = 1. Then, d(Wn) = T, ∀n ≥ T .

Proof. Suppose n = T . Then, by definition, WT (h1) = arg maxx∈CT
|⟨x, h1⟩|2. In other words,

one chooses the best beamforming vector out of T linearly independent beamforming vectors.

It is known (see [8]) that this mapping provides full diversity. For n > T , let J represent

the collection of all subsets of {1, . . . , n} with cardinality T . We have |J| =
(

n
T

)
. For any

J ∈ J, let A(J ) = {h1 : J = {i1, . . . , iT }} ⊂ CT . In other words, A(J ) represents the set

of channel states for which the T worst beamforming vectors have the indices in J . Note

that if h1 ∈ A(J ), then Wn chooses the best beamforming vector in codebook {xj : j ∈ J }.

In other words, if h1 ∈ A(J ), then Wn(h1) = M⋆
{xj :j∈J }(h1). Therefore,

out(Wn)=
∑
J ∈J

P
(

|⟨M⋆
{xj :j∈J }(h1), h1⟩|2 <

1
P

, h1 ∈A(J )
)

(3)

≤
∑
J ∈J

P
(

|⟨M⋆
{xj :j∈J }(h1), h1⟩|2 <

1
P

)
(4)

=
∑
J ∈J

out
(
M⋆

{xj :j∈J }

)
. (5)

This implies d(Wn) ≥ minJ ∈J d(M⋆
{xj :j∈J }). For any J ∈ J, the T vectors xj, j ∈ J are linearly

independent by the construction of the codebook Cn. By invoking the already-established

special case of the proposition for n = T , we have d(M⋆
{xj :j∈J }) = T for any J ∈ J, and thus

d(Wn) ≥ T . Since (obviously) d(Wn) ≤ T as well, we obtain d(Wn) = T .

The proposition shows that in the MISO setting, it is not necessary to choose the best

beamforming vector in a codebook to achieve full diversity. One just has to avoid the T − 1

worst beamforming vectors and pick at least the T th worst vector in the given codebook.

We now show how this observation can be applied to the multicast setting for designing a

distributed quantizer that can achieve full diversity. We first provide an example for T = 4,

K = 2, and then state and prove the general case.

Example 1. Let T = 4 and K = 2. We design a distributed quantizer that achieves full

diversity by using 2 feedback bits per receiver per channel state. Consider the codebook C16 =
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{x1, . . . , x16}. Note that any 4 of the 16 vectors in C16 are linearly independent. We imagine

the vectors in C16 as cells of a 4 × 4 grid as shown in Fig. 1. In a sense that is to be

made precise in the following, Receiver 1 will be “working on” the columns of the grid, while

Receiver 2 will work on the rows of the grid. Each row/column is uniquely represented by one

of the 2-bit binary codewords. All the data in Fig. 1 will be available at both receivers and

the transmitter.

x1

x5

x9

x13

x2

x6

x10

x14

x3

x7

x11

x15 x16

x12

x8

x4

Receiver 1
00 01 10 11

00

01

10

11

R
ec

ei
ve

r
2

Fig. 1: An example quantizer for T = 4, K = 2.

Consider now a distributed quantizer, namely Q̃, that operates as follows: Given channel

state h = [h1 h2], Receiver 1 calculates and sorts its SNR values as |⟨xi1 , h1⟩|2P ≤ · · · ≤

|⟨xi16 , h1⟩|2P for some {i1, . . . , i16} = {1, . . . , 16}. Then, for Receiver 1, as far as its re-

ceived SNR is concerned, the 3 worst beamforming vectors are xi1 , xi2 and xi3. In the grid

representation of the 16 beamforming vectors in Fig. 1, there exists a column index, say

Ic ∈ {1, . . . , 4}, that does not contain any one of the 3 worst beamforming vectors xi1 , xi2

and xi3. Receiver 1 feeds back the 2-bit binary codeword that represents Ic (For example,

if i1 = 9, i2 = 7 and i3 = 16, we have Ic = 2, and Receiver 1 feeds back 01.). Similarly,

Receiver 2 calculates and sorts its SNR values as |⟨xj1 , h2⟩|2P ≤ · · · ≤ |⟨xj16 , h2⟩|2P for

some {j1, . . . , j16} = {1, . . . , 16}. There exists, this time, a row index Ir ∈ {1, . . . , 4} that

does not contain any one of the 3 worst beamforming vectors xj1 , xj2 , xj3 for Receiver 2.

Receiver 2 feeds back 2 bits that represents Ir. The transmitter recovers the indices Ir and Ic,

and transmits over the beamforming vector in the Ith
r row, Ith

c column of the grid in Fig. 1.

We now analyze the diversity gain with Q̃. Using a union bound over all receivers, we have

out(Q̃) = P
(

min
k∈{1,2}

|⟨Q̃(h), hk⟩|2P < 1
)

(6)
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≤
2∑

k=1
P
(
|⟨Q̃(h), hk⟩|2P < 1

)
. (7)

On the other hand, by construction, the quantizer Q̃ avoids any of the 3 worst beamforming

vectors for any of the receivers. Hence, by Proposition 2, for any k ∈ {1, 2}, we have

P(|⟨Q̃(h), hk⟩|2P < 1) ∈ O(P −4). This implies d(Q̃) = 4.

The construction in Example 1 extends to the case of an arbitrary number of receivers

and transmitter antennas in a straightforward manner. In fact, let I be the collection of

all K-dimensional vectors whose components are elements of the set {1, . . . , T}. We use

the notation i = [i1 · · · iK ] ∈ I for members of I. Consider now the reindexing of the

codebook CT K as {xi : i ∈ I} = CT K . For any h, and any k ∈ {1, . . . , K}, there is an

index Ik ∈ {1, . . . , T} such that the set {xi : ik = Ik, i ∈ I} does not contain any of the

T −1 worst beamforming vectors for Receiver k. The index Ik can be calculated at Receiver

k and fed back using ⌈log2 T ⌉ bits. The transmitter uses the beamforming vector x[I1···IK ].

Let Q̃C
T K

denote the corresponding distributed quantizer. Proposition 2 applied to a union

bound over all receivers reveals that Q̃C
T K

provides full diversity. We summarize this result

by the following proposition.

Proposition 3. For any T and K, there is a quantizer Q with d(Q) = T and Rk(Q) =

⌈log2 T ⌉, ∀k.

Let us now state the converse result. The proof is provided in Appendix A.

Proposition 4. For any quantizer Q with Rk(Q) < ⌈log2 T ⌉ for some k ∈ {1, . . . , K}, we

have d(Q) < T .

The main result of this section is then the following combined restatement of Propositions

3 and 4.

Theorem 1. A necessary and sufficient condition to achieve the full diversity gain in a

quantized multicast beamforming system is to have ⌈log2 T ⌉ feedback bits from each receiver.

This generalizes the classical result for point-to-point MISO systems to multicast systems.
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IV. Approaching the Full-CSIT Performance with Distributed

Quantization

We now consider the design of distributed quantizers whose outage probabilities can

be made arbitrarily close to that of a full-CSIT system. This will be accomplished via

the following two steps. As the first step, in Section IV-A, we will show that for any

arbitrary codebook C, one can synthesize a distributed quantizer that can achieve the same

performance as the centralized quantizer M⋆
C. Then, as the second step, in Section IV-B, we

will show that the outage probabilities of centralized quantizers with well-designed codebooks

can approach the full-CSIT outage probability. A combined restatement of our results in

these two steps will show the existence of distributed quantizers whose performances can

approach that of a full-CSIT system.

A. The Synthesis of a Distributed Quantizer out of a Centralized Quantizer

As we have mentioned in Section II-D, the fundamental difficulty in designing distributed

quantizers is the absence of a rate-limited distributed implementation of the optimal cen-

tralized quantizer M⋆
C(h) = arg maxx∈C mink |⟨x, hk⟩| for a given codebook C. If this difficulty

could be overcome, the problem of designing a good distributed quantizer would boil down

to the much easier problem of designing a good quantizer codebook.

Fortunately, for the outage probability performance measure, we do not need to implement

M⋆
C as it is. In fact, an outage event with M⋆

C, i.e. the event maxx∈C mink |⟨x, hk⟩|2P < 1, occurs

if and only if maxx∈C mink 1(|⟨x, hk⟩|2P < 1) = 1. Hence, for

QC(h) ≜ arg max
x∈C

min
k

1
(
|⟨x, hk⟩|2P < 1

)
(8)

(with ties broken arbitrarily), we have out(QC) = out(M⋆
C). But now, in contrast to the

mapping M⋆
C, the new mapping QC can be realized as a distributed quantizer. In fact, Receiver

k can calculate the |C| binary values 1(|⟨x, hk⟩|2P < 1), x ∈ C and feed them back using |C|

feedback bits. The transmitter can then determine QC(h) for every given h via |C| feedback

bits from each receiver. We summarize these results by the following proposition.

Proposition 5. For any codebook C, we have out(QC) = out(M⋆
C) with Rk(QC) = |C|, ∀k.

There is one particular disadvantage of our construction so far: In general, the synthesis

of the distributed version of an R-bit centralized quantizer (with a codebook of cardinality



13

2R) requires 2R bits per receiver. In other words, there is an exponential rate amplification

while transitioning from the centralized to the distributed. For example, an 8-bit centralized

quantizer requires 256 bits per receiver to be realized in a distributed manner.

In order to resolve the exponential rate amplification problem, we revisit the operation of

the encoders of QC at the receivers. Consider, for example, the quantizer encoding operation

at Receiver 1. For a given codebook C = {xi : i = 1, . . . , |C|}, what Receiver 1 feeds back

can be thought as a configuration {i : |⟨xi, h1⟩|2P ≤ 1}, i.e. a set of beamforming vectors in

C that result in outage at Receiver 1 given that the channel state from the transmitter to

Receiver 1 is h1. Now, let

χ(C) ≜
∣∣∣{{i : |⟨xi, h1⟩|2P ≤ 1} : h1 ∈ CT ×1

}∣∣∣ (9)

denote the cardinality of the collection of all configurations given C. In order to convey the

binary values 1(|⟨x, hk⟩|2P < 1), x ∈ C to the transmitter, it is then sufficient for each

receiver to send ⌈log2 χ(C)⌉ feed back bits for every channel state. The reason |C| feed back

bits is sufficient for this purpose is a result of the trivial estimate χ(C) ≤ 2|C|.

As it turns out, for codebooks with large enough cardinalities, the quantity χ(C) is in

fact much smaller than 2|C|, i.e. most of the configurations are, in fact, not feasible. To show

this, we will utilize an existing result on hyperplane arrangements on real Euclidean spaces.

Let F = {fi : i = 1, . . . , |F|} ∈ Rd be an arbitrary codebook of d-dimensional real vectors.

A hyperplane {f ∈ Rd : ⟨f , d⟩ = b} where d ∈ Rd − {0} and b ∈ R then induces the

configuration {i : ⟨fi, d⟩ ≤ b} on codebook F . We let

χ(F) ≜
∣∣∣{{i : ⟨fi, d⟩ ≤ b} : b ∈ R, d ∈ Rd

}∣∣∣ . (10)

One can readily observe that when d = 1, we have χ(F) ≤ 2|F| with equality if and only if

the elements of F are all distinct. For a general d, Harding [16] has proved the tight bound

χ(F) ≤ 2
d∑

i=0

(
|F| − 1

i

)
. (11)

whenever |F| ≥ d + 1. This implies that for any non-empty F , we have χ(F) ∈ O(|F|d).

This greatly improves upon the trivial estimate χ(F) ≤ 2|F|, especially when |F| is large.

Coming back to our problem, the quantity χ(C) in (9) can be thought as a “complex

version” of χ(F). Intuition suggests that a similar bound on χ(C) should hold. We verify
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this intuition via the following proposition, which essentially follows from Harding’s result.

The proof of the proposition can be found in Appendix B.

Proposition 6. For any codebook C, we have

χ(C) ≤ min

2|C|, 16
( 2T∑

i=0

(
|C| − 1

i

))4 . (12)

Note that the upper bound in (12) is O(|C|8T ) as |C| → ∞. Therefore, for any fixed

codebook C and a given channel state h, the binary values 1(|⟨x, hk⟩|2P < 1), x ∈ C can be

losslessly conveyed from Receiver k to the transmitter using 8T log2 |C| + O(1) bits. Using

these feedback bits, the transmitter can determine QC(h) in the same manner as discussed

in the beginning of this section. The resulting quantizer, which we shall refer to as QC from

now on, achieves out(QC) = out(QC) = out(M⋆
C). This establishes the following main result

of this section.

Theorem 2. For any codebook C, we have out(QC) = out(M⋆
C) with Rk(QC) ∈ 8T log2 |C| +

O(1), ∀k.

Hence, for any rate-R centralized quantizer, we can synthesize a distributed quantizer that

achieves the same performance as the centralized quantizer and can operate with roughly

8TR bits per receiver.

B. The Existence of Good Centralized Quantizer Codebooks

In Section IV-A, we have shown how to synthesize a distributed quantizer out of a

centralized quantizer in a rate-efficient manner. Therefore, to design a good distributed

quantizer whose performance can approach the full-CSIT performance, it is sufficient to

design a good centralized quantizer. Also, since the performance of an optimal centralized

quantizer depends only on its codebook, we just need to design a good quantizer codebook.

Since the full-CSIT beamforming vector can take any value in X , we wish to design our

codebook, say C, in such a way that for any beamforming vector x ∈ X , there should be a

codebook element, say y ∈ C, that is “close enough” to x. This way, we hope to minimize

the losses due to quantization of an optimal beamforming vector. Also, a desirable property

is to have some control on the precision of quantization, i.e., how close we want y to be

to x. In this context, high precision translates to low quantization losses but high feedback
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rates, while low precision means high losses but low rates. Such a control over precision thus

allows us to determine the dependence of the achievable performance on the feedback rate.

These properties that we wish to have in our codebook design lead to the following notion

of a “δ-covering codebook.”

Definition 1. Let δ ∈ (0, 1). We call Dδ a δ-covering codebook if ∀x ∈ X , ∃y ∈ D such that

|⟨y, x⟩|2 ≥ 1 − δ.

Though not vital for our discussions in this paper, explicit constructions of δ-covering

codebooks for any δ ∈ (0, 1) is available [11]. We summarize the construction in [11] below.

Example 2. Given δ ∈ (0, 1), let sδ ≜ 2⌈log2(2T/δ)⌉+1, Sδ ≜ {−1 + ksδ, k = 0, . . . , 2s−1
δ },

and Yδ ≜ {y/∥y∥ : ℜy1, ℑy1, . . . , ℜyT , ℑyT ∈ Sδ, and 0 < ∥y∥ ≤ 1}. According to [11,

Proposition 3], for any δ ∈ (0, 1), the codebook Yδ is a δ-covering codebook with |Yδ| ∈ O(δ−2t).

Let us now discuss how to utilize the δ-covering codebooks in a point-to-point MISO

system with K = 1. Consider the optimal quantizer M⋆
Dδ

(h) = arg maxx∈Dδ
|⟨x, h1⟩|2 for

codebook Dδ. Note that M⋆
Dδ

can be implemented using ⌈log2 |Dδ|⌉ feedback bits. By the

definition of Dδ, for any given channel state h1, there exists y ∈ Dδ such that |⟨ h1
∥h1∥ , y⟩|2 ≥

1 − δ. This leads to the lower bound

|⟨M⋆
Dδ

(h1), h1⟩|2P ≥ |⟨F(h1), h1⟩|2P (1 − δ) (13)

= ∥h1∥2P (1 − δ). (14)

Therefore, in the worst case scenario, a well-designed quantizer results in a uniformly bounded

multiplicative SNR loss. This is a very useful property as most performance measures (such

as outage probability or ergodic capacity) are monotonic functions of the SNR. We can thus

conclude that the performance of a rate-⌈log2 |Dδ|⌉ quantized beamforming system at power

P is at least that of a full-CSIT system at power P (1 − δ). In particular, for the codebook

Yδ, the performance with R bits of feedback at power P is no worse than the full-CSIT

performance at power P (1 − O(2− R
2t )).

Then, a fundamental question is to determine whether or not the SNR loss due to

quantization can similarly be uniformly bounded for a general multicast system with K > 1

receivers. The positive answer is provided by the following theorem for the special case of

K = 2 receivers. The proof of the theorem can be found in Appendix C.
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Theorem 3. Let K = 2. We have ∀h ∈ CT ×K , ∃y ∈ Yδ, γ(y, h) ≥ γ(F(h), h)(1 − O(
√

δ)).

Hence, for a two-receiver system, for any channel state, one can quantize the full-CSIT

beamforming vector F(h) to a quantized vector y ∈ Dδ such that the SNR loss is always

within (1−O(
√

δ)) of the SNR with full CSIT. A major open problem is to study whether a

similar result holds for more than two receivers. We shall note the following in this context.

Remark 1. Let
−→
hk = hk

∥hk∥ , k = 1, . . . , K. In [1, Section III.B], it is claimed that (with our

notation)

|⟨F(h),
−→
hk⟩|2 ≥ 1

K2 , ∀k, ∀h. (15)

If (15) were true, then Theorem 3 could easily be shown to hold for any K. In fact, suppose

(15) holds. Due to the δ-covering property of Yδ, there is a beamforming vector y ∈ Yδ such

that |⟨F(h), y⟩|2 ≥ 1 − δ. Using Lemma 1 in Appendix C, we could then obtain |⟨y,
−→
hk⟩|2 ≥

|⟨F(h),
−→
hk⟩|2(1 − K2

√
δ), ∀k, ∀h. Multiplying each side of this inequality by ∥hk∥2 and then

taking the minimum over all k, we would obtain γ(y, h) ≥ γ(F(h), h)(1 − K2
√

δ), which

generalizes Theorem 3 to any number of receivers K.

Unfortunately, the claim in (15) does not hold (despite the fact that mink |⟨F(h), hk⟩|2 ≥
1

K2 mink ∥hk∥2 holds for every h as shown in [15, Claim 2.4.2(i)].). As a counterexample,

let T = K = 2 with h1 = [2 0]T, h2 = [0 1]T. For z = [z1 z2]T = F([h1 h2]), suppose

|z1|2 = |⟨z,
−→
h1⟩|2 ≥ 1

K2 = 0.25. Then, since |z1|2 + |z2|2 ≤ 1, we have |z2|2 ≤ 0.75. This

implies γ(z, h) = mink∈{1,2} |⟨z, hk⟩|2 ≤ |⟨z, h2⟩|2 = |z2|2 ≤ 0.75. On the other hand, for the

beamforming vector z′ = [
√

0.2
√

0.8]T, we have γ(z′, h) = 0.8 > 0.75, which contradicts the

optimality of z. In fact, it can be shown (we omit the proof here as it is not relevant to our

major focus) that for any K and T there exists a set H ⊂ CT ×K of channel states such that

P(H) > 0 and |⟨F(h),
−→
hk⟩|2 ≥ 1

K2 , ∀k fails to hold for any h ∈ H.

Now, let out(M; P ) denote the outage probability of mapping M for a given transmitter

power constraint P . Combining Theorems 2 and 3, we obtain the following main result for

a two-user multicast system with distributed quantized beamforming.

Theorem 4. Let K = 2. With R feedback bits per receiver per channel state, an outage

performance of out(F; P (1 − O(2− R
32T 2 ))) is achievable at any P .
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Proof. Theorem 3 implies that for the optimal centralized quantizer M⋆
Yδ

for Yδ, we have

out(M⋆
Yδ

; P ) ≤ out(F; P (1 − O(
√

δ))). On the other hand, by Theorem 2, M⋆
Yδ

can be realized

as the distributed quantizer QYδ
using 8T log2 |Dδ| + O(1) = 16T 2 log2

1
δ

+ O(1) bits per

each receiver. The equality follows since |Yδ| ∈ O(δ−2T ) as shown in Example 2. Setting

R = 16T 2 log2
1
δ

+ O(1) and solving for δ, we obtain the statement of the theorem.

One way to visualize the outage probability loss due to quantization is that in the usual

graph of P in the horizontal axis versus the outage probability in the vertical axis (where

both axes are in the logarithmic scale), the outage probability with R bits of feedback per

receiver is at most the full-CSIT curve shifted −10 log10(1 − O(2− R
32T 2 ))dBs to the right.

Equivalently, since as x → 0, − log(1 − O(x)) = O(x), the outage probability with R bits of

feedback is within O(2− R
32T 2 )dBs to the outage probability with full CSIT.

It is also instructive to compare our result for K = 2 to that of a point-to-point MISO

system where K = 1. For the case K = 1, it is known (see e.g. [9]) that the performance with

quantized beamforming is at most within O(2− R
T −1 )dBs to the outage probability with full

CSIT. Hence, despite the complicated distributed nature of the quantizer design problem for

K = 2, the performance loss due to quantization can still be made to decay exponentially

with the per-receiver feedback rate R as O(2− R
32T 2 ). Here, we also note that the factor 32T 2

is likely not the best possible, and can perhaps be improved (made smaller) with more work.

Let us now discuss the case of more than two receivers K ≥ 3. In this case, our results are

not strong enough to prove that one can uniformly approach the full-CSIT performance using

distributed feedback. The difficulty is to show the existence of good centralized quantizers

whose performances can uniformly approach the full-CSIT performance. The existence of

such quantizers can be proved e.g. by an extension of Theorem 3 to more than two receivers.

Nevertheless, if such an extension had been available, it would have been straightforward to

synthesize good distributed quantizers out of the good centralized quantizers via the same

arguments as in Section IV-A (Note that the results of Section IV-A hold for any number

of receivers.). On the other hand, intuition suggests, without much room for doubt, that

a sequence of optimal centralized quantizers for a sequence of δ-covering codebooks should

uniformly approach the full-CSIT performance as δ → 0. Part of the next section verifies

this intuition with numerical simulations for the special case of three receivers.



18

V. Numerical Results

In this section, we provide numerical simulations that verify our analytical results. We

first show examples of quantizers that can achieve full diversity in a rate-optimal manner

for a three-receiver system with two or three transmitter antennas.

We recall from Section III that the necessary and sufficient condition to achieve full

diversity is to have ⌈log2 2⌉ = 1 bit of feedback per receiver when T = 2, and ⌈log2 3⌉ = 2

bits of feedback per receiver when T = 3. Such a performance can be achieved with the

quantizer Q̃C
T K

, where CT K is an arbitrary codebook of cardinality T K with the property

that any of its T − 1 elements are linearly independent. Hence, for the case T = 2 and

K = 3, we have constructed one codebook C8,1 of cardinality 23 = 8 by drawing 8 samples

independently and uniformly at random on X . We have constructed a second codebook C8,2

of cardinality 8 via the same procedure. For the case T = 3 and K = 3, we have constructed

the codebooks C27,1 and C27,2 of cardinality 33 = 27 in the same manner. The performance of

the corresponding quantizers Q̃C8,1 , Q̃C8,2 , Q̃C27,1 and Q̃C27,2 are then as shown in Fig. 2 together

with the performance of the open-loop system (R = 0) with no feedback2 and the full-CSIT

systems (R = ∞). In the figure, the horizontal axis represents P in decibels, and the vertical

axis represents the outage probability.

We can observe that the open-loop system can only achieve a diversity gain of 1, the

quantizers Q̃C8,1 and Q̃C8,2 can achieve a diversity gain of 2, and the quantizers Q̃C27,1 and

Q̃C27,2 achieve a diversity gain of 3. In other words, the quantizers Q̃C8,1 , Q̃C8,2 , Q̃C27,1 and Q̃C27,2

achieve the maximal diversity gains of their respective systems. Obviously, and as we can

also observe from Fig. 2, the array gains of quantizers of the form Q̃C will depend on the

exact values of the elements of C. Further optimizations of the codebook C in this context

is an interesting direction for future work.

We now verify that we can approach the full-CSIT performance by increasing the per-

receiver feedback rates. Also, in order to demonstrate that our constructions can be ap-

plied to different codebook designs, we consider here Grassmannian codebooks. Let GT,N ≜
arg minC∈X N max{|⟨x, y⟩| : x, y ∈ C, x ̸= y} denote a cardinality-N Grassmannian codebook

2The open-loop system refers to the scenario where the transmitter uses a unique beamforming vector, say xo ∈ X ,

for every channel state. The resulting outage probability can be shown to be independent of the number of transmitter

antennas T and the choice of the beamforming vector xo.
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Fig. 2: Achieving full diversity in a rate-optimal manner using distributed limited feedback.

for a system with T transmitter antennas. Note that by definition, the codebook GT,N

provides the maximum minimum distance between the distinct codebook elements among

all codebooks with cardinality N .

We have constructed Grassmannian codebooks GT,N for (T, N) ∈ {(2, 2), (2, 4), (2, 16),

(3, 4), (3, 8), (3, 16), (3, 256)} via numerical methods [8]. The performance of the correspond-

ing distributed quantizers QGT,N
(which can be implemented using R = N bits per receiver)
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Fig. 3: Approaching the full-CSIT performance using distributed limited feedback.

are shown in Fig. 3 for a three-receiver system with either T = 2 and T = 3. We can

observe that for both cases T = 2 and T = 3, as the per-receiver feedback rate R = N

increases, the performance of the distributed quantizers approaches uniformly to the full-

CSIT performance. This suggests that Theorem 4 will also hold for K = 3. We have obtained

similar results for a two-receiver system K = 2, and have thus verified Theorem 4.

We now consider the performance of the quantizers QGT,N
for different T and N ; we refer to
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Section IV-A for the definition of QC for a given codebook C. Note that for any T and N , the

quantizer QGT,N
can achieve the exact same performance as the quantizer QGT,N

, and it uses

only ⌈log2 χ(GT,N)⌉ ∈ O(log4 N) feedback bits instead of the N bits as required by QGT,N
. In

general, implementing the quantizer QC requires one to determine the collection of all possible

configurations C ≜ {{i : |⟨xi, h1⟩|2P ≤ 1} : h1 ∈ CT ×1} given C. Therefore, as a first step,

we have estimated C via C′ ≜ {{i : |⟨xi, h1j⟩|2 ≤ 1} : j = 1, . . . , J}, where h1j, j = 1, . . . , J

is a sequence of circularly-symmetric complex Gaussian random vectors with unit variance

for each component, and J is chosen to be a sufficiently large number so as to (hopefully)

observe all configurations. Using this method, we have identified 4 configurations for G2,2,

16 for G2,4, 1090 for G2,16, 16 for G3,4, 256 for G3,8, and finally, 14496 for G3,16. We have then

simulated the actual communication system as follows: Given codebook C, each receiver

calculates the configuration c corresponding to the given (generated) channel state. This is

followed by each receiver feeding back the index of the configuration in C′ with the smallest

Hamming distance to c. The quantizer decoder uses the beamforming vector that avoids

outage at all the receivers according to the received configurations. If no such beamforming

vector exists, the quantizer decoder uses an arbitrary beamforming vector. Note that the

performance of the resulting quantizer will be the same as QC (and thus QC) provided that

C′ = C. In fact, for the Grassmannian codebooks, the resulting simulated outage probabilities

was an exact match with the outage probabilities in Fig. 3. This shows, for example, that

the cost of implementing G2,16 can be lowered down to ⌈log2 1090⌉ = 11 bits per receiver

instead of 16 bits per receiver.
Unfortunately, determining the set of all configurations of a codebook with our “exhaustive

Monte Carlo” method is not a feasible task when the codebook cardinality is large. For

example, interpolation suggests that the codebook G3,256 will have around 240 configurations

(so that it can be implemented with 40 bits per receiver instead of 256 bits per receiver.). One

solution may be to find good structured codebook designs that will induce a structured set of

configurations. Finding such codebook designs, or, in general, designing efficient algorithms

for finding good distributed quantizers will remain as challenging open problems.

VI. Conclusions

We have studied the design of outage-optimal distributed quantizers for beamforming in

MISO multicast channels. We have constructed rate-optimal quantizers that can achieve
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full diversity. For the special case of a two-receiver system, we have also designed quantizers

that can provably approach the outage probability with full CSIT. Determining whether a

similar results holds for more than two receivers remains as an open problem.

Beamforming is not optimal in general, e.g. for more than 3 receivers. Therefore, the

extensions of our results for general covariance transmission is another important future re-

search direction. Also, the problem of how to design (analytically or numerically) distributed

quantizers for different performance measures should be studied in detail. In this context,

as far as formal analytical results are concerned, the main obstacle is the construction of a

distributed quantizer that provides a uniformly bounded multiplicative SNR loss. Numerical

design of distributed quantizers also prove to be very challenging. For example, Lloyd-like

algorithms incur a computational complexity that grows exponentially with the number of

receivers, and are thus simply not feasible as numerical design methods.

Finally, we would also like to mention that some of our results can be extended to “outage-

like” performance measures with little or no additional work. One example is the scenario

where one wishes to minimize the maximum error probability among all receivers for a given

specific channel code. Our diversity results can easily be extended to this scenario with no

additional work. Similarly, with T transmitter antennas, ⌈log2 T ⌉ feedback bits from each

receiver can be shown to be necessary and sufficient.

Appendix A

Proof of Proposition 4

Suppose (without loss of generality) that R1(Q) < ⌈log2 T ⌉. Let Bk ≜ {Ek(h) : h ∈ CT }

denote the image of the encoding function Ek at the kth receiver. We have |B1| < T . Also,

let Bk,b ≜ {h : Ek(h) = b}. We can then find a lower bound on the outage probability with

Q as

out(Q) = P(min
k

|⟨Q(h), hk⟩|2P < 1) (16)

≥ P
(
|⟨Q(h), h1⟩|2P < 1

)
(17)

=
∑

bK∈BK

∫
BK,bK

· · ·
∑

b1∈B1

∫
B1,b1

1
(
|⟨D(b1, . . . , bk), h1⟩|2P < 1

)
dh1 · · · dhK (18)

≥
∑

bK∈BK

∫
BK,bK

· · ·
∑

b1∈B1

∫
B1,b1

1
(
|⟨yb1 , h1⟩|2P < 1

)
dh1 · · · dhK (19)
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=
∑

b1∈B1

∫
B1,b1

1
(
|⟨yb1 , h1⟩|2P < 1

)
dh1 (20)

≥
∑

b1∈B1

∫
B1,b1

1
(

max
b∈B1

|⟨yb, h1⟩|2P < 1
)

dh1 (21)

= P
(

max
b∈B1

|⟨yb, h1⟩|2P < 1
)

, (22)

where yb ≜ arg minx∈X P(|⟨x, h⟩|2 < 1|h ∈ B1,b), b ∈ B1. Let Y denote the T × |B1|

matrix whose columns are the vectors yb, b ∈ B1. Also, let U1DU2 = Y be the singular

value decomposition of Y, where U1 ∈ CT ×T and U2 ∈ C|B1|×|B1| are unitary matrices, and

D ∈ RT ×|B1| is a diagonal matrix with non-negative entries. Let di, i = 1, . . . , |B1| denote

the entry in the ith row, ith column of D. We have

max
b∈B1

|⟨yb, h1⟩|2 = ∥h†
1Y∥2

1 (23)

= ∥h†
1DU2U†

2U2∥2
1 (24)

≤ ∥h†
1DU2U†

2∥2
1∥U2∥2

1 (25)

= ∥h†
1D∥2

1∥U2∥2
1 (26)

≤ |B1|∥h†
1D∥2

1∥U2∥2
2 (27)

= |B1|∥h†
1D∥2

1 (28)

= |B1| max
i∈{1,...,|B1|}

d2
i |h1i|2 (29)

where the first inequality follows from the submultiplicity of the 1-norm, and the second

inequality follows from the inequality ∥A∥1 ≤
√

n∥A∥2, A ∈ Cn×n. This implies

out(Q) ≥ P
(

|B1| max
i∈{1,...,|B1|}

d2
i |h1i|2P < 1

)
. (30)

Since this final lower bound involves the maximum of only |B1| exponential random variables,

we have d(Q) ≤ |B1| < T .

Appendix B

Proof of Proposition 6

We begin with the following definitions. For any given y ∈ CT ×1, let

yR ≜ [ℜy1 ℑy1 ℜy2 ℑy2 · · · ℜyT ℑyT ] ⊂ R2T ×1, (31)

yI ≜ [−ℑy1 ℜy1 − ℑy2 ℜy2 · · · − ℑyT ℜyT ] ⊂ R2T ×1. (32)
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Note that for any y1, y2 ∈ CT ×1, we have ℜ⟨y1, y2⟩ = ⟨yR
1 , yR

2 ⟩ and ℑ⟨y1, y2⟩ = ⟨yR
1 , yI

2⟩.

We also let CR ≜ {xR : x ∈ C}.

Now, without loss of generality, suppose that P = 1 (The collection of all possible

configurations remain the same unless P = 0). We have

χ(C) =
∣∣∣{{i : |⟨xi, y⟩| ≤ 1} : y ∈ CT ×1

}∣∣∣ (33)

=
∣∣∣{{i : −u ≤ ⟨xR

i , yR⟩ ≤ u, −v ≤ ⟨xR
i , yI⟩ ≤ v} : y ∈ CT ×1, u, v ≥ 0, u2 + v2 ≤ 1

}∣∣∣ (34)

≤
∣∣∣{{i : −u ≤ ⟨xR

i , yR⟩ ≤ u, −v ≤ ⟨xR
i , yI⟩ ≤ v} : y ∈ CT ×1, u, v ≥ 0

}∣∣∣ , (35)

where the inequality follows since omitting a condition (which, in the above derivation,

is the condition u2 + v2 ≤ 1) on the configurations cannot decrease the total number

of configurations. Consider now the general problem of estimating the cardinality of the

collection

A ≜ {{i : S1(i, z) and · · · and SL(i, z)} : z ∈ Z} , (36)

where i takes values on a finite set, S1(i, z), . . . , SL(i, z) are L arbitrary logical statements

whose truth (or falsity) depend on i and z, and Z is some arbitrary space where z takes its

values. Let

Bℓ ≜ {{i : Sℓ(i, z)} : z ∈ Z} , (37)

and

B ≜
L∏

ℓ=1
Bℓ (38)

with the understanding that the product is Cartesian. We claim that the map [B1 · · · BL] 7→∩L
ℓ=1 Bℓ is a surjection from B to A. In fact, if A ∈ A, then A = ∩L

ℓ=1{i : Sℓ(i, z0)} for some

z0 ∈ Z, and for B′
ℓ = {i : Sℓ(i, z0)}, ℓ = 1, . . . , L, we have [B′

1 · · · B′
L] 7→ A. The surjectivity

implies |A| ≤ |B|. Moreover, since Bℓ, ℓ = 1, . . . , L are finite collections of sets, we have

|B| = ∏L
ℓ=1 |Bℓ|, and therefore

|A| ≤
L∏

ℓ=1
|Bℓ| =

L∏
ℓ=1

|{{i : Sℓ(i, z)} : z ∈ Z}| . (39)

In particular, for the expression in (35), we can identify 4 different conditions (L = 4)

corresponding to the 4 inequalities. We can then obtain

χ(C) ≤
∣∣∣{{i : −u ≤ ⟨xR

i , yR⟩} : y ∈ CT ×1, u, v ≥ 0
}∣∣∣×
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∣∣∣{{i : ⟨xR
i , yR⟩ ≤ u} : y ∈ CT ×1, u, v ≥ 0

}∣∣∣× ∣∣∣{{i : −v ≤ ⟨xR
i , yI⟩} : y ∈ CT ×1, u, v ≥ 0

}∣∣∣×∣∣∣{{i : ⟨xR
i , yI⟩ ≤ v} : y ∈ CT ×1, u, v ≥ 0

}∣∣∣. (40)

The first factor can be evaluated to be∣∣∣{{i : −u≤⟨xR
i , yR⟩} : y∈CT ×1, u, v ≥ 0

}∣∣∣ =
∣∣∣{{i : −u≤⟨xR

i , yR⟩} : y∈CT ×1, u ≥ 0
}∣∣∣ (41)

=
∣∣∣{{i : −u≤⟨xR

i , d⟩} : d∈R2T ×1, u ≥ 0
}∣∣∣ (42)

=
∣∣∣{{i : u≥⟨xR

i , −d⟩} : d∈R2T ×1, u ≥ 0
}∣∣∣ (43)

=
∣∣∣{{i : u≥⟨xR

i , d⟩} : d∈R2T ×1, u ≥ 0
}∣∣∣ (44)

≤
∣∣∣{{i : u≥⟨xR

i , d⟩} : d∈R2T ×1, u ∈ R
}∣∣∣ (45)

≤ χ(CR). (46)

Each remaining factor in (40) can similarly be bounded by χ(CR). Therefore, we have χ(C) ≤

[χ(CR)]4. Applying (11) to this final inequality proves the proposition.

Appendix C

Proof of Theorem 3

We need the following two lemmas. The following lemma has originally been stated in

[13], but the provided proof had flaws. Here, we provide a corrected proof.

Lemma 1. For any u, v, w ∈ X , we have∣∣∣∣|⟨u, v⟩|2 − |⟨u, w⟩|2
∣∣∣∣ ≤

√
1 − |⟨v, w⟩|2. (47)

Proof. Let G ≜ vv† − ww† and z ≜ ⟨v, w⟩. It can be verified (after some straightforward

calculations) that G admits the spectral decomposition

G =
√

1 − |z|2[u1 u2]

1 0

0 −1

 [u1 u2]† (48)

=
√

1 − |z|2(u1u†
1 − u2u†

2), (49)

where

u1 = αv − βv0 exp(j∠z), (50)

u2 = βv + αv0 exp(j∠z) (51)
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are orthonormal vectors with

v0 = w − vv†w√
1 − |z|2

, (52)

(α, β) =


√√√√1 +

√
1 − |z|2

2
,

√√√√1 −
√

1 − |z|2

2

 . (53)

Therefore, ∣∣∣∣|⟨u, v⟩|2 − |⟨u, w⟩|2
∣∣∣∣ = |u†Gu| (54)

=
√

1 − |z|2
∣∣∣|⟨u, u1⟩|2 − |⟨u, u2⟩|2

∣∣∣ (55)

≤
√

1 − |z|2
(
|⟨u, u1⟩|2 + |⟨u, u2⟩|2

)
(56)

=
√

1 − |z|2∥u∥2 (57)

=
√

1 − |z|2. (58)

This concludes the proof.

Lemma 2. For every ϵ > 0 and any v, w ∈ X with |⟨v, w⟩|2 ≤ 1 − ϵ, there are constants

δ̃, C̃ > 0 (that may depend on ϵ) such that ∀δ ≤ δ̃, ∃z ∈ Dδ with |⟨z, w⟩| ≥ |⟨v, w⟩| and

|⟨z, v⟩| ≥ 1 − C̃δ.

Proof. Consider a fixed ϵ > 0 and arbitrary vectors v, w ∈ X with |⟨v, w⟩|2 ≤ 1 − ϵ. We

first define some auxiliary variables. Let

A ≜ 2 exp(j∠⟨v, w⟩)
ϵ

, (59)

L ≜ ∥v + A
√

δw∥, (60)

and

u ≜ v + A
√

δw
L

. (61)

Note that L2 = 1 + δ|A|2 + 2|A||⟨v, w⟩|, and thus

L = 1 + |A||⟨v, w⟩|
√

δ + O(δ). (62)

with

1
L

= 1 − |A||⟨v, w⟩|
√

δ − O(δ). (63)
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By definition, for every δ > 0, there is a z ∈ Yδ with

|⟨z, u⟩|2 ≥ 1 − δ. (64)

We shall prove that such a choice of z satisfies |⟨z, w⟩| ≥ |⟨v, w⟩| and |⟨z, v⟩| ≥ 1 − O(δ)

for every sufficiently small δ, and this will conclude the proof of the lemma. First, we show

that |⟨z, w⟩| ≥ |⟨v, w⟩|. Let

z̃ ≜ z exp(−j∠⟨z, u⟩). (65)

We have

∥z̃ − u∥2 = 2 − 2ℜ⟨z̃, u⟩ (66)

= 2 − 2|⟨z, u⟩| (67)

≤ 2 − 2
√

1 − δ (68)

< 2 − 2
√

(1 − δ)2 (69)

= 2δ. (70)

Therefore, ∥z̃ − u∥ ≤
√

2δ, and thus

z̃ = u + t
√

2δ (71)

for some ∥t∥ ≤ 1. We now have

|⟨z, w⟩| = |⟨z̃, w⟩| (72)

=
∣∣∣⟨u, w⟩ + ⟨t, w⟩

√
2δ
∣∣∣ (73)

=
∣∣∣∣∣⟨v, w⟩ + A

√
δ

L
+ ⟨t, w⟩

√
2δ

∣∣∣∣∣ (74)

≥ |⟨v, w⟩ + A
√

δ|
L

−
∣∣∣√2δ

∣∣∣ (75)

= (|⟨v, w⟩| + |A|
√

δ)(1 − |A||⟨v, w⟩|
√

δ − O(δ)) −
√

2δ (76)

= |⟨v, w⟩| +
(

2(1 − |⟨v, w⟩|2)
ϵ

−
√

2
)√

δ − O(δ) (77)

≥ |⟨v, w⟩| +
(
2 −

√
2
)√

δ − O(δ), (78)

where the first three equalities follow from (65), (71), and (61), respectively; (75) is a

consequence of the reverse triangle inequality and the fact that |⟨t, z⟩| ≤ ∥t∥∥z∥ = 1; (76)

follows by observing that the phase of ⟨v, w⟩ matches that of A
√

δ and from the substitution
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of the value of 1
L

in (63); (77) follows once we substitute the value of A and after some

straightforward simplifications; and, finally, (78) follows since 1−|⟨v,w⟩|2
ϵ

≥ 1 by our initial

assumption on v and w. The last inequality implies |⟨z, v⟩| ≥ |⟨v, w⟩| for sufficiently small

δ.

We now show that |⟨z, v⟩| ≥ 1 − O(δ). First, note that according to (61), we have v =

Lu − A
√

δw, and therefore,

|⟨v, z⟩| =
∣∣∣L⟨u, z⟩ − A

√
δ⟨w, z⟩

∣∣∣ (79)

≥ L|⟨u, z⟩| − |A|
√

δ|⟨w, z⟩|, (80)

where the inequality follows from the reverse triangle inequality. Let us now consider the

terms in the final lower bound one by one. The quantity L has already been evaluated in

(62). We also have |⟨u, z⟩| > 1 − δ according to (64). We find an upper bound on |⟨w, z⟩|

using the same arguments as in (72) through (77). The only difference is that for (75), we

use the triangle inequality instead of the reverse triangle inequality, and this leads to the

bound |⟨w, z⟩| ≤ |⟨v, w⟩| + O(
√

δ). Substituting all these bounds and equalities to (80), we

obtain

|⟨v, z⟩| ≥ (1 + |A||⟨v, w⟩|
√

δ + O(δ))(1 − δ) − |A|
√

δ(|⟨v, w⟩| + O(
√

δ)). (81)

Upon expanding the parenthesis and simplifying, we have |⟨v, z⟩| ≥ 1 − O(δ), and this

concludes the proof.

We are now ready to prove the theorem. Let z = F(h). We shall prove that for every

sufficiently small δ, there exists y ∈ Dδ such that γ(y, h) ≥ (1 − δ)γ(z, h).

In a multicast network with two users, it is well-known [5] that

γ(z, h) = max
x∈X

min
k

|⟨x, hk⟩|2 = max
X∈Ct×t:∥X∥≤1

min
k

∥Xhk∥2. (82)

In other words, if we consider beamforming as transmission over a rank-1 covariance matrix,

the SNR provided by the best rank-1 covariance matrix is already equal to the SNR provided

by a general-rank covariance matrix. Hence, for any X ∈ Ct×t with ∥X∥ ≤ 1, we have

γ(z, h) ≥ mink ∥Xhk∥2. In particular, for X = 1√
T

IT , we obtain

γ(z, h) ≥ 1
T

min
k

∥hk∥2. (83)
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Now, for any given k ∈ {1, 2}, let
−→
h k = hk/∥hk∥ and αk = |⟨z,

−→
h k⟩|2. We have γ(z, h) =

mink(αk∥hk∥2). The lower bound in (83) then implies that either α1 ≥ 1
T

or α2 ≥ 1
T

(As

otherwise, if α1 < 1
T

and α2 < 1
T

, we have γ(z, h) < 1
T

mink ∥hk∥2 and this contradicts (83).).

Suppose that α1 ≥ 1
T

and α2 ≥ 1
T

. By definition, there exists y′ ∈ Dδ with |⟨z, y′⟩|2 ≥ 1 − δ.

Using Lemma 1, we can then obtain

|⟨y′,
−→
h k⟩|2 ≥ αk −

√
1 − |⟨z, y′⟩|2 (84)

≥ αk −
√

δ (85)

≥ αk(1 − T
√

δ) (86)

for any k ∈ {1, 2}, where the last inequality follows since αk ≥ 1
T

. This implies

γ(y′, h) = min
k

(|⟨y′,
−→
h k⟩|2∥hk∥2) (87)

≥ min
k

(αk∥hk∥2)(1 − T
√

δ) (88)

= γ(z, h)(1 − T
√

δ), (89)

and thus proves the theorem for the case where α1, α2 ≥ 1
T

.

Suppose now that α1 ≥ 1
T

but α2 < 1
T

. In this case, consider the application of Lemma

2 with the choice of variables v = z and w =
−→
h 2. In such a scenario, since |⟨v, w⟩|2 =

|⟨z,
−→
h 2⟩|2 = α2 < 1

T
, Lemma 2 is applicable for the special case ϵ = 1 − 1

T
, and moreover, in

such an application, the constants δ′ and C ′ in the statement of Lemma 2 will depend only

on T . Hence, according to Lemma 2, there are constants C1, C2 > 0 (that now depend only

on T ) such that ∀δ < C1, ∃y′′ ∈ Dδ, |⟨y′′, z⟩|2 ≥ 1 − C2δ and |⟨y′′,
−→
h 2⟩|2 ≥ |⟨z,

−→
h 2⟩|2 = α2.

The inequality |⟨y′′, z⟩|2 ≥ 1 − C2δ implies (using the same arguments as in (84) through

(86)) that

|⟨y′′,
−→
h 1⟩|2 ≥ α1(1 − T

√
C2δ). (90)

Combining this with the bound |⟨y′′,
−→
h 2⟩|2 ≥ α2, we obtain

γ(y′′, h) ≥ γ(z, h)(1 − T
√

C2δ), (91)

which proves the theorem for the case α1 ≥ 1
T

and α2 < 1
T

. The remaining case α1 < 1
T

and

α2 ≥ 1
T

can be handled in the same manner. This concludes the proof.
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