
SCHRÖDINGER OPERATORS AND DE BRANGES SPACES

CHRISTIAN REMLING

Abstract. We present an approach to de Branges’s theory of Hilbert spaces

of entire functions that emphasizes the connections to the spectral theory of
differential operators. The theory is used to discuss the spectral representation

of one-dimensional Schrödinger operators and to solve the inverse spectral
problem.

1. Introduction

In this paper, I will discuss the general direct and inverse spectral theory of one-
dimensional Schrödinger operators H = −d2/dx2 + V (x) from the point of view
of de Branges’s theory of Hilbert spaces of entire functions. In particular, I will
present a new solution of the inverse spectral problem. Basically, we will obtain
a local version of the Gelfand-Levitan characterization [14] of the spectral data of
one-dimensional Schrödinger operators. However, our treatment is quite different
from that of Gelfand-Levitan.

I have tried to pursue two goals in this paper. First of all, I will emphasize the
connections between de Branges’s theory of Hilbert spaces of entire functions and
the spectral theory of differential operators from the very beginning, and I hope
that this leads to a concrete and accessible introduction to de Branges’s results, at
least for people with a background similar to mine. My treatment of de Branges’s
theory is, of course, by no means intended to be a replacement for the deeper
and more general, but also more abstract and demanding treatment of de Branges
himself in [5, 6, 7, 8] and especially [9].

The second and perhaps more important goal is to give a new view on the
(especially inverse) spectral theory of one-dimensional Schrödinger operators by
recognizing it as a part of a larger picture. More specifically, I believe that one of
de Branges’s major results (namely, Theorem 7.3 below) may be interpreted as the
mother of many inverse theorems. In this paper, we will use it to discuss the inverse
theory for Schrödinger operators, but I think one can discuss along these lines the
inverse theory of other operators as well, provided there is a good characterization
of the spectral data that occur. In particular, it should be possible to give such a
treatment for the one-dimensional Dirac operator.

The treatment of the inverse spectral problem given in this paper is neither short
nor elementary, the major thrust really is the new picture it provides. It is not short
because there are computational parts and technical issues (mainly in Sect. 13–15)
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2 CHRISTIAN REMLING

that need to be taken care of. However, I think that the general strategy, which
will be explained in Sect. 9, is quite transparent. Our treatment is not elementary,
either, because it depends on the machinery of de Branges spaces and at least two
major results from this theory (Theorems 7.3 and 7.4), which will not be proved
here.

To place this paper into context, let me mention some work on related top-
ics. De Branges’s results from [5, 6, 7, 8, 9] are rather complete, so not much has
been added since as far as the general, abstract theory is concerned. Dym and
Dym-McKean [11, 12] also use de Branges spaces to study certain differential op-
erators, and they give independent introductions de Branges’s results. The theory
of de Branges spaces is intimately connected with the theory of so-called canonical
systems (also known as Zakharov-Shabat systems), and there exists a consider-
able literature on this subject. See, for instance, [18, 26] and the references cited
therein. Sakhnovich’s book [26] in fact discusses more general systems, and a study
of these systems in the spirit of de Branges spaces is carried out in [1]. As for the
inverse spectral theory of one-dimensional Schrödinger operators, there is the clas-
sical work of Gelfand-Levitan mentioned above [14]. Important improvements are
due to Levitan and Gasymov [22], and further developments of this line of attack
may be found in [28, 29]. For modern expositions of the Gelfand-Levitan theory,
we refer the reader to chapter 2 of either [21] or [23]. A different approach – which
so far has been used to attack uniqueness questions, but in principle also gives a
procedure for reconstructing the potential from the spectral data – was recently
developed by Simon, partly in collaboration with Gesztesy [15, 27]. This approach
emphasizes the role of large z asymptotics and is quite different from both [14] and
the approach used here. However, we will see some connections in Sect. 4. Actu-
ally, after the preparation of the first version of this paper, it turned out that these
connections have consequences concerning an open question from [27] – see [25] for
more on this. Finally, for still another recent treatment of uniqueness questions,
see [20].

This paper is organized as follows. We define de Branges spaces and establish
some basic properties in the following section. In Sect. 3, we then discuss classical
material on the spectral representation of Schrödinger operators from this point
of view. This gives an immediate intuitive understanding of de Branges spaces,
and it also provides an aesthetically pleasing picture of the spectral representation.
Moreover, this material is then used to derive conditions on the spectral data (which
are related to the Gelfand-Levitan conditions). The local approach suggested by
the theory of de Branges spaces simplifies this treatment considerably. Here, by
“local” we roughly mean that instead of studying the problem on the half line
(0,∞) at one stroke, we study the problems on (0, N) for arbitrary N > 0.

In Sect. 5, we state the inverse spectral theorem, which is the converse of the
results of Sect. 4. According to the general philosophy of this paper, this inverse
spectral theorem will also be formulated in the language of de Branges spaces. The
proof requires preparatory material; this is presented in Sect. 6–8. In particular,
in Sect. 7 we state, without proof, four theorems on de Branges spaces on which
our treatment of the inverse problem will crucially depend. In Sect. 9, we start the
proof of the inverse spectral theorem, and we explain the general strategy. This
proof is then carried out in Sect. 11–16. In Sect. 10, we prepare for the proof by a
discussion of canonical systems in the style of the treatment of Sect. 3. In Sect. 17,
we discuss the implications of our results for the spectral measures of Schrödinger
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operators on the half line (0,∞). We do this mainly in order to clarify the relations
to the Gelfand-Levitan theory. Sect. 18 contains some remarks of a more general
character. The final Sect. 19 presents the analogs of our results for Dirichlet bound-
ary conditions at the origin (in the main body of the paper, we exclusively deal
with Neumann boundary conditions). Dirichlet boundary conditions are important
in a variety of situations; in fact, I will need this material in [25]. In Sect. 19,
we also give a characterization of half line spectral functions for locally integrable
potentials, which, in this generality, could be new.

Acknowledgment: I thank the referee for providing useful information.

2. Elementary properties of de Branges spaces

One way to understand de Branges spaces is to interpret them as weighted
versions of Paley-Wiener spaces. This point of view is put forward in the intro-
duction of [9]. So let us recall the Paley-Wiener Theorem. Fix a > 0, and de-
fine PWa as the space of Fourier transforms f̂ of functions f ∈ L2(−a, a) (where
f̂(k) = (2π)−1/2

∫
f(x)e−ikx dx). For f ∈ L2(−a, a), the Fourier transform f̂ , orig-

inally defined as an element of L2(R), uniquely extends to an entire function. The
Paley-Wiener Theorem says that

PWa = {F : C→ C : F entire,
∫
R

|F (λ)|2 dλ <∞, |F (z)| ≤ CF ea|z|}.(2.1)

An entire function E : C→ C is called a de Branges function if |E(z)| > |E(z)|
for all z ∈ C+ = {z ∈ C : Im z > 0}. Note that such an E is root-free on C+. Now
the de Branges space B(E) based on E is defined in analogy to (2.1): It consists of
the entire functions F which are square integrable on the real line with respect to
the weight function |E|−2, ∫

R

∣∣∣∣F (λ)
E(λ)

∣∣∣∣2 dλ <∞,(2.2)

and satisfy a growth condition at infinity. In the presence of (2.2), there are a
number of ways to state this condition. To formulate this result, we need some
notions from the theory of Hardy spaces. However, this subject will not play an
important role in what follows. A good reference for further information on this
topic is [13].

We write N0 for the set of those functions from the Nevanlinna class N for
which the point mass at infinity in the canonical factorization is non-negative.
A more direct, equivalent characterization goes as follows: f ∈ N precisely if f is
holomorphic on C+ and can be written as the quotient of two bounded holomorphic
functions on C+: f = F1/F2. Such an f is in N0 if in this representation, F2 can
be chosen so that

lim
y→∞

ln |F2(iy)|
y

= 0.

We will also need the Hardy space H2 (on the upper half plane), which may be
defined as follows: f ∈ H2 precisely if f is holomorphic on C+ and

sup
y>0

∫ ∞
−∞
|f(x+ iy)|2 dx <∞.

Equivalently, H2 is the space of Fourier transforms of functions from L2(−∞, 0).
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Proposition 2.1. Suppose that F is entire and (2.2) holds. Then the following
are equivalent:
a) |F (z)/E(z)|, |F#(z)/E(z)| ≤ CF (Im z)−1/2 for all z ∈ C+.
b) F/E, F#/E ∈ N0.
c) F/E, F#/E ∈ H2.

Here, we use the notation F#(z) = F (z). By definition, an entire function F is
in B(E) precisely if, in addition to (2.2), one (and hence all) of these conditions
holds.

In [9], de Branges uses condition b) to define B(E) (functions from N are called
functions of bounded type in [9]). Condition a) is used in [12], while c) gives the
most elegant description of B(E) as

B(E) = {F : C→ C : F entire, F/E, F#/E ∈ H2}.(2.3)

Clearly, (2.2) now follows automatically.

Proof. As H2 ⊂ N0, c) implies b). Condition c) also implies a) because H2 functions
admit a Cauchy type representation [13, Chapter II]:

F (z)
E(z)

=
1

2πi

∫
R

F (λ)
E(λ)

dλ

λ− z
(z ∈ C+),

and similarly for F#/E. Taking (2.2) into account, we now get a) by applying the
Cauchy-Schwarz inequality.

Now assume that a) holds. A standard application of the residue theorem (see
[12, Section 6.1] for the details) shows that

1
2πi

∫
R

F (λ)
E(λ)

dλ

λ− z
=

{
F (z)/E(z) z ∈ C+

0 z ∈ C−
.(2.4)

It is well known that (2.4) together with (2.2) implies that F/E ∈ H2 [13, Exercise
II.2a)]. Of course, an analogous argument works for F#/E, so c) holds.

Finally, we show that b) implies c). The canonical factorization (see again [13])
of F/E ∈ N0 reads

F (z)/E(z) = eiαeihzB(z)g(z)S1(z)/S2(z),(2.5)

where α ∈ R, h ≥ 0, B is a Blaschke product, g is an outer function, and S1, S2

are the singular factors. Now F/E is meromorphic, and (2.2) prevents poles on
the real line, so F/E is actually holomorphic not only on the upper half plane, but
on a neighborhood of the closure of C+. As a consequence, S1 = S2 ≡ 1. To see
this, just recall how the singular factors were constructed [13, Sect. II.5]. Given
this, (2.2) and (2.5) together with Jensen’s inequality now imply that F/E ∈ H2

(compare [13, Sect. II.5]). By the same argument, F#/E ∈ H2.

Theorem 2.2. B(E), endowed with the inner product

[F,G] =
1
π

∫
R

F (λ)G(λ)
dλ

|E(λ)|2
,

is a Hilbert space. Moreover, for any z ∈ C, point evaluation is a bounded linear
functional. More explicitly, the entire function Jz given by

Jz(ζ) =
E(z)E(ζ)− E(z)E(ζ)

2i(z − ζ)
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belongs to B(E) for every z ∈ C, and [Jz, F ] = F (z) for all F ∈ B(E).

Proof. B(E) is obviously a linear space, and [·, ·] is a scalar product on B(E). Also,
using condition a) from Proposition 2.1, it is not hard to see that Jz ∈ B(E) for
every z ∈ C.

Now fix F ∈ B(E). Then, as noted above, F/E obeys the Cauchy type formula
(2.4). A similar computation shows that

1
2πi

∫
R

F (λ)
E#(λ)

dλ

λ− z
=

{
0 z ∈ C+

−F (z)/E#(z) z ∈ C−
.

Combining these equations, we see that indeed

F (z) =
1
π

∫
R

Jz(λ)F (λ)
dλ

|E(λ)|2
,(2.6)

at least if z /∈ R. But the right-hand side of (2.6) is an entire function of z, so (2.6)
must hold for all z ∈ C.

It remains to prove completeness of B(E). Since entire functions are already
determined by their restrictions to R, the space B(E) may be viewed as a subspace
of L2(R, π−1|E(λ)|−2dλ). So we only need to show that B(E) is closed in this larger
space. To this end, observe that

‖Jz‖2 = Jz(z) =
|E(z)|2 − |E(z)|2

4 Im z

remains bounded if z varies over a compact set. So if Fn ∈ B(E) converges in norm
to some F ∈ L2(R, π−1|E(λ)|−2dλ), then Fn(z) = 〈Jz, Fn〉L2 converges uniformly
on compact sets to 〈Jz, F 〉, and thus F (z) = 〈Jz, F 〉 defines an entire extension of
F ∈ L2(R, π−1|E(λ)|−2dλ). We can now use (2.3) and completeness of H2 to see
that F belongs to B(E).

Ea(z) = e−iaz is a de Branges function. With this choice, we recover the Paley-
Wiener space from (2.1): PWa = B(Ea). The general de Branges space B(E)
shares many properties with this simple example, as the full blown theory from [9]
shows: B(E) always consists of transforms of L2 functions with bounded support.
However, in the general case, one has to use eigenfunctions of a differential operator
instead of the exponentials eikx and spectral measures instead of Lebesgue measure.
These (rather vague) remarks will be made more precise later. Note also that the
reproducing kernel Jz for B(Ea) = PWa is the Dirichlet kernel,

Jz(ζ) = Da(z − ζ) =
sin a(z − ζ)

z − ζ
,

as a brief computation shows. This is easy to understand: for general L2 functions,
convolution with Da projects onto the frequencies in (−a, a), but for functions in
PWa, these are the only frequencies that occur, so Da acts as a reproducing kernel
on this space.

There is another simple choice for E. Every polynomial without zeros in C+∪R
is a de Branges function. It is clear that in this case B(E) contains precisely the
polynomials whose degree is smaller than that of E. Basically, the theory of these
(finite dimensional) de Branges spaces is the theory of orthogonal polynomials.
Many results from [9] can be viewed as generalizations of results about orthogonal
polynomials.
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3. Spectral representation of 1D Schrödinger operators

In this section, we show that the spaces used in the usual spectral representation
of Schrödinger operators on bounded intervals are de Branges spaces. So consider
the equation

−y′′(x) + V (x)y(x) = zy(x),(3.1)

with V ∈ L1(0, N). We will also be interested in the associated self-adjoint op-
erators on L2(0, N). Throughout this paper, but with the exception of the final
section, we will use Neumann boundary conditions at x = 0. Thus we consider the
operators Hβ

N = −d2/dx2 + V (x) on L2(0, N) with boundary conditions

y′(0) = 0, y(N) sinβ + y′(N) cosβ = 0.

We start by recalling some basic facts about the spectral representation of Hβ
N .

General references for this material are [4, 30].
The spectrum of Hβ

N is simple and purely discrete. Let u(x, z) be the solution
of (3.1) with the initial values u(0, z) = 1, u′(0, z) = 0 (so u satisfies the boundary
condition at x = 0). Define the Borel measure ρβN by

ρβN =
∑

u′
u (N,E)=− tan β

δE
‖u(·, E)‖2L2(0,N)

.(3.2)

Here, δE denotes the Dirac measure (i.e. δE({E}) = 1, δE(R \ {E}) = 0), and the
sum ranges over all eigenvalues of Hβ

N , and of course this interpretation also makes
sense if β = π/2.

The operator U : L2(0, N)→ L2(R, dρβN ), defined by

(Uf)(λ) =
∫
u(x, λ)f(x) dx,(3.3)

is unitary, and UHβ
NU
∗ is multiplication by λ in L2(R, dρβN ). It is a simple but

noteworthy fact that the action of U depends neither on N nor on the boundary
condition β. The adjoint (or inverse) of U acts as

(U∗F )(x) =
∫
R

u(x, λ)F (λ) dρβN (λ),(3.4)

for F ∈ L2(R, dρβN ) with finite support.
Similar statements hold for half line problems (if a potential V ∈ L1,loc([0,∞)) is

given), except that the construction of the spectral measure ρ is slightly more com-
plicated. One can use, for instance, the limiting procedure of Weyl (see [4, Chapter
9]). Also, there is the distinction between the limit point and limit circle cases. In
the latter case, one needs a boundary condition at infinity to get self-adjoint oper-
ators (see again [4] or [30]). In either case, U , defined by (3.3) for compactly sup-
ported f ∈ L2(0,∞), extends uniquely to a unitary map U : L2(0,∞)→ L2(R, dρ),
and we still have that UHU∗ is multiplication by the variable in L2(R, dρ) (in the
limit circle case, ρ and H depend on the boundary condition at infinity). Finally,
for compactly supported F ∈ L2(R, dρ), we also still have (3.4), with ρβN replaced
by ρ, of course. In this paper, half line problems will sometimes be lurking in the
background, but we will mainly work with problems on bounded intervals.

We now identify L2(R, dρβN ) as a de Branges space. Let

EN (z) = u(N, z) + iu′(N, z).
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Then, since u(N, z) = u(N, z) and similarly for u′,

EN (z)EN (ζ)− EN (z)EN (ζ)
2i(z − ζ)

=
u(N, z)u′(N, ζ)− u′(N, z)u(N, ζ)

z − ζ
.(3.5)

Denote the left-hand side of (3.1) by τy. We have Green’s identity∫ N

0

(
(τf)g − fτg

)
=
(
f(x)g′(x)− f ′(x)g(x)

)∣∣∣x=N

x=0
,

and this allows us to write (3.5) in the form

EN (z)EN (ζ)− EN (z)EN (ζ)
2i(z − ζ)

=
∫ N

0

u(x, z)u(x, ζ) dx.

Taking z = ζ ∈ C+ shows that EN is a de Branges function. The de Branges space
based on EN will be denoted by SN ≡ B(EN ) (S for Schrödinger). By Theorem
2.2 and the above calculation, the reproducing kernel Jz of SN is given by

Jz(ζ) =
∫ N

0

u(x, z)u(x, ζ) dx.(3.6)

Theorem 3.1. For any boundary condition β at x = N , the Hilbert spaces SN and
L2(R, dρβN ) are identical. More precisely, if F (z) ∈ SN , then the restriction of F to
R belongs to L2(R, dρβN ), and F 7→ F

∣∣
R

is a unitary map from SN onto L2(R, dρβN ).

Proof. Basically, the theorem is true because Jz, as given in (3.6), is the reproducing
kernel for both spaces. The formal proof proceeds as follows.

Fix β ∈ [0, π). We will usually drop the reference to this parameter (and also
to N) in the notation in this proof. Let {λn} be the eigenvalues of Hβ

N ; note that
{λn} supports the spectral measure ρ = ρβN . We first claim that Jz ∈ L2(R, dρ) for
every z ∈ C. More precisely, by this we mean that the restriction of Jz to R (or
{λn}) belongs to L2(R, dρ). Indeed, using (3.2) and (3.6), we obtain

‖Jz‖2L2(R,dρ) =
∑
n

|Jz(λn)|2 ρ({λn})

=
∑
n

∣∣〈u(·, z), u(·, λn)〉L2(0,N)

∣∣2 ‖u(·, λn)‖−2
L2(0,N)

= ‖u(·, z)‖2L2(0,N) .

The last equality is Parseval’s formula, which applies because the normed eigen-
functions u(·, λn)/‖u(·, λn)‖ form an orthonormal basis of L2(0, N). A similar com-
putation shows that

〈Jw, Jz〉L2(R,dρ) = 〈u(·, z), u(·, w)〉L2(0,N) = Jz(w) = [Jw, Jz]SN .

By extending linearly, we thus get an isometric restriction map V0 : L({Jz :
z ∈ C}) → L2(R, dρ), V0Jz = Jz

∣∣
R
. V0 extends uniquely to an isometry V :

L({Jz : z ∈ C}) → L2(R, dρ). Now the finite linear combinations of the Jz are
dense both in L2(R, dρ) and in SN . In fact, as Jλm(λn) = ‖u(·, λn)‖2δmn, the Jz
already span L2(R, dρ) if z runs through the eigenvalues λn. As for SN , we just
note that since [Jz, F ] = F (z), an F ∈ SN that is orthogonal to all Jz’s must vanish
identically.

It follows that V maps SN unitarily onto L2(R, dρ). Finally, if F ∈ SN , then

(V F )(λn) = 〈V0Jλn , V F 〉L2(R,dρ) = [Jλn , F ] = F (λn),
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so V (originally defined by a limiting procedure) indeed just is the restriction map
on the whole space.

Recall that U from (3.3) maps L2(0, N) unitarily onto L2(R, dρβN ). Hence, by
using the identification L2(R, dρβN ) ≡ SN obtained in Theorem 3.1, we get an
induced unitary map (which we still denote by U) from L2(0, N) onto SN . We
claim that this map is still given by (3.3); more precisely, for f ∈ L2(0, N),

(Uf)(z) =
∫
u(x, z)f(x) dx (z ∈ C).(3.7)

To see this, note that (3.7) is correct for f = u(·, λn), where λn is an eigenvalue
of Hβ

N . Indeed, u(·, λn) is real valued, so in this case the right-hand side of (3.7)
equals Jλn(z), which clearly is in SN . It is of course automatic that Uf , computed
with formula (3.7), restricts to the right function on {λn}. Now (3.7) follows in full
generality by a standard approximation argument.

As a consequence, we have the following alternate description of SN as a set, in
addition to the definition (2.3):

SN =

{
F (z) =

∫ N

0

u(x, z)f(x) dx : f ∈ L2(0, N)

}
.(3.8)

This may be interpreted as a statement of Paley-Wiener type. Originally, SN was
defined as a space of entire functions which are square integrable on the real line
with respect to a weight function and satisfy a growth condition; now (3.8) says
that these function precisely arise by transforming L2 functions with support in
(0, N), using the eigenfunctions u(·, z).

In the case of zero potential, one basically recovers the original Paley-Wiener
Theorem. A still much more general result along these lines (namely, Theorem 7.3)
will be discussed later.

The material developed so far has some consequences. We continue to denote
the de Branges space associated with a Schrödinger equation on an interval (0, N)
by SN .

Theorem 3.2. a) Suppose that 0 < N ≤ N ′. Then SN is isometrically contained
in SN ′ , that is, SN ⊂ SN ′ and ‖F‖SN = ‖F‖SN′ for all F ∈ SN .

b) For any boundary condition β ∈ [0, π) and any spectral measure ρ for the
half line problem (if V is originally defined only on (0, N), one may in fact also
choose an arbitrary locally integrable continuation of V to [0,∞) and possibly also
a boundary condition at infinity), we have that

‖F‖2SN =
1
π

∫ ∞
−∞

|F (λ)|2

u2(N,λ) + u′2(N,λ)
dλ

=
∫ ∞
−∞
|F (λ)|2 dρβN (λ) =

∫ ∞
−∞
|F (λ)|2 dρ(λ)

for all F ∈ SN .

Remarks. 1. Of course, the two parts of the theorem can be combined, and thus
in the second part, N on the right-hand sides can be replaced by any N ′ ≥ N .

2. Part b) says that SN is embedded in L2(R, dµ) for many measures µ. In fact,
one can give a description of all such measures µ. This description is an analog
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of the Nevanlinna parametrization of the solutions of a moment problem. See [9,
Theorem 30] for a very general version of this statement.

3. It is a well known (and often useful) fact that in the limit point case, the
(unique) spectral measure ρ of the half line problem can be obtained as

dρ(λ) =
1
π

lim
N→∞

dλ

u2(N,λ) + u′2(N,λ)
.(3.9)

More precisely, (3.9) holds when integrated against continuous functions with com-
pact support. Theorem 3.2 shows that this convergence takes place in a rather
peculiar way.

4. The fact that ‖F‖SN can be computed by integrating against the discrete
measures ρβN may be interpreted as a sampling theorem. In this context, recall
that (3.8) indeed says that, in a certain sense, functions from SN have limited
bandwidth.

5. Here, we use the term “spectral measure” in the sense of Weyl theory. Later,
in Sect. 17, we will define spectral measures as those measures that satisfy the
conclusion of Theorem 3.2b).

Proof. a) Obviously, L2(0, N) is a subspace of L2(0, N ′) = L2(0, N) ⊕ L2(N,N ′),
and the map U from (3.7) maps these spaces unitarily onto SN and SN ′ , respec-
tively. (Here, we make essential use of the fact that the action of U is independent
of N .)

b) The first integral is the definition of the norm on SN . The second formula
gives the correct result because SN ≡ L2(R, dρβN ) by Theorem 3.1. Finally, since
L2(0, N) is isometrically contained in L2(0,∞), the argument from the first part of
this proof also shows that SN is isometrically contained in L2(R, dρ).

4. The spaces SN

We now analyze in more detail the de Branges spaces SN that come from a
Schrödinger equation, as discussed in the previous section. We will prove that
SN as a vector space is independent of the potential V . Moreover, the norm on
SN always is a small distortion of the norm for zero potential. In particular, the
topology of SN is also independent of V .

Along the way, we introduce the function φ which should be thought of as the
spectral data of the Schrödinger equation. This function also plays a central role
in the Gelfand-Levitan treatment of the inverse problem. The use of φ instead of
the spectral measure (say) has many advantages. For instance, φ allows us to treat
the problem locally: φ on an interval [0, 2N ] determines and is determined by V
on [0, N ]. This is also implicit in the Gelfand-Levitan theory, although this aspect
is usually not emphasized. The results of this section are basic to our approach to
the inverse problem.

We assume that a potential V ∈ L1(0, N) is given. Then we can make the
following statements about the structure of the associated space SN .

Theorem 4.1. As a set, SN is given by

SN =

{
F (z) =

∫ N

0

f(t) cos
√
zt dt : f ∈ L2(0, N)

}
.
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Note that if V ≡ 0, then u(x, z) = cos
√
zx, so the set from Theorem 4.1 is just

the description (3.8) of the de Branges space S(0)
N for zero potential. The function

f ∈ L2(0, N) is of course uniquely determined by the corresponding F ∈ SN .
There are also strong restrictions on the possible scalar products on the de Branges

spaces coming from Schrödinger equations. This is the content of the following the-
orem.

We need some notation. Given a continuous, even function φ : [−2N, 2N ]→ R,
we define an integral operator Kφ on L2(0, N) by

(Kφf) (s) =
∫ N

0

K(s, t)f(t) dt,(4.1a)

K(s, t) =
1
2

(φ(s− t) + φ(s+ t)) .(4.1b)

Kφ is self-adjoint and compact (in fact, Hilbert-Schmidt).

Theorem 4.2. There exists a function φ : [−2N, 2N ] → R which is absolutely
continuous, even, and satisfies φ(0) = 0, such that for all F ∈ SN ,

‖F‖2SN = 〈f, (1 +Kφ)f 〉L2(0,N).

Here, f is related to F as in Theorem 4.1.

The requirement that φ be absolutely continuous on [−2N, 2N ] means that there
exists a function φ′ ∈ L1(−2N, 2N) such that φ(x) = φ(0) +

∫ x
0
φ′(t) dt for all

x ∈ [−2N, 2N ].
Later (Theorem 5.1), we will prove that Theorems 4.1, 4.2 have a converse: the

conditions formulated in these two theorems actually characterize the de Branges
spaces that come from a Schrödinger equation among all de Branges spaces.

Both theorems depend on the fact that the asymptotics of the solutions of (3.1)
as |z| → ∞ are in leading order independent of V .

Proof of Theorem 4.1. We first show that SN is contained in the set on the right-
hand side. So let F ∈ SN ; by (3.8), F is of the form

F (z) =
∫ N

0

u(x, z)g(x) dx (g ∈ L2(0, N)).(4.2)

By a standard asymptotic expansion, we have that

∣∣u(x, z)− cos
√
zx
∣∣ ≤ |z|−1/2 exp(‖V ‖L1(0,N)) exp(|Im z1/2|x) (0 ≤ x ≤ N).

(4.3)

Compare, for instance, [3, 24] (actually, both references do not present the result
exactly in the form quoted above, but minor modifications yield (4.3)).

DefineG(k) = F (k2). ThenG is entire, even, and (4.2), (4.3) imply that |G(k)| ≤
CeN |k|. Moreover, again by (4.2) and (4.3),

G(k) =
∫ N

0

g(x) cos kx dx+O(k−1)

for k ∈ R, k →∞, so G ∈ L2(R). Thus the Paley-Wiener Theorem applies: G has
the form

G(k) =
1
2

∫ N

−N
f(x)eikx dx,
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where f ∈ L2(−N,N). Since G is even, we must also have that f(−x) = f(x),
which in turn implies that G(k) =

∫ N
0
f(x) cos kx dx. In other words, F (z) =

G(z1/2) =
∫ N

0
f(x) cos

√
zx dx, as desired.

To prove the converse inclusion, we first claim that

inf
λ∈R

∣∣∣∣ E(λ)
E0(λ)

∣∣∣∣ > 0,(4.4)

where E0 is the de Branges function for zero potential: E0(z) = cos
√
zN −

i
√
z sin

√
zN . To establish (4.4), it clearly suffices to show that

lim inf
λ→±∞

∣∣∣∣ E(λ)
E0(λ)

∣∣∣∣ > 0.

Consider first the case λ → ∞, and put again λ = k2, k → ∞. Assume that,
contrary to the assertion, there exists a sequence kn →∞ so that E(k2

n)/E0(k2
n)→

0. We now use (4.3) and the analogous estimate on u′ which reads∣∣u′(x, z) +
√
z sin

√
zx
∣∣ ≤ exp(‖V ‖L1(0,N)) exp(|Im z1/2|x) (0 ≤ x ≤ N).(4.5)

Since E(z) = u(N, z) + iu′(N, z), we obtain∣∣∣∣ E(k2
n)

E0(k2
n)

∣∣∣∣2 =

(
cos knN +O(k−1

n )
)2 + (kn sin knN +O(1))2

cos2 knN + k2
n sin2 knN

.(4.6)

If kn sin knN remains bounded as n→∞, then | cos knN | → 1, so (4.6) shows that
|E(k2

n)/E0(k2
n)|2 is bounded away from zero. Thus, by passing to a subsequence if

necessary, we may assume that kn| sin knN | → ∞. But then we see from (4.6) that
|E(k2

n)/E0(k2
n)|2 → 1, which is a contradiction to our choice of kn.

The argument for λ → −∞ is similar (in fact, easier). Write λ = −κ2 with
κ→∞. One shows that both E and E0 are of the asymptotic form∣∣E(−κ2)

∣∣2 =
κ2

4
e2κN +O(κe2κN ),∣∣E0(−κ2)

∣∣2 =
κ2

4
e2κN +O(κe2κN ),

so |E(−κ2)/E0(−κ2)| → 1. Thus (4.4) holds.
Now if F (z) =

∫
f(x) cos

√
zx dx with f ∈ L2(0, N), then F/E0 ∈ L2(R), hence

also F/E ∈ L2(R) by (4.4). Moreover, F is obviously entire.
It remains to establish one of the conditions of Proposition 2.1. To this end, we

establish Cauchy type representations for F/E, F#/E. As we have already seen
in the proof of Proposition 2.1, such representations imply condition a) from the
Proposition.

Write z = R2e2iϕ,
√
z = Reiϕ with R > 0, 0 ≤ ϕ ≤ π/2. Then the asymptotic

formulae (4.3), (4.5) yield

E(z) = cos(NReiϕ)− iReiϕ sin(NReiϕ) +O(eNR sinϕ).

The constant implicit in the error term is of course independent of R and ϕ. It
follows that

|E(z)| ≥ R| sin(NReiϕ)| −O(eNR sinϕ).(4.7)
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Hence there exist constants C0, R0 > 0 with the following property: If R ≥ R0 and
sinϕ ≥ C0/R, then

|E(z)| ≥ 1
2
ReNR sinϕ.(4.8)

In the opposite case of small ϕ, we restrict our attention to the radii Rn =
N−1(2πn + π/2), with n ∈ N, n large. The assumption sinϕ < C0/R ensures
that the error term from (4.7) is actually bounded, and

sin(NReiϕ) = sin(NR cosϕ+ iNR sinϕ) = sin(NR+ iNR sinϕ) +O(R−1)

= sin(π/2 + iNR sinϕ) +O(R−1) = cosh(NR sinϕ) +O(R−1).

As coshx ≥ 1, we thus get from (4.7) that |E(z)| ≥ Rn/2 for z as above and
sufficiently large n. Obviously, if sinϕ < C0/R, then e−NC0eNR sinϕ ≤ 1, so (4.8),
possibly with 1/2 replaced by a smaller constant, actually holds for all ϕ ∈ [0, π/2]
if R is restricted to the values Rn from above. Finally,

|F (R2e2iϕ)| ≤
∫ N

0

|f(x)| | cos(Reiϕx)| dx ≤ ‖f‖2
√
NeNR sinϕ.

In conclusion, it follows that |F (z)/E(z)| ≤ CR−1 for R ∈ {Rn} and ϕ ∈ [0, π/2],
and this estimate indeed implies the Cauchy formula

F (z)
E(z)

=
1

2πi

∫ ∞
−∞

F (λ)
E(λ)

dλ

λ− z
(z ∈ C+)

by a standard procedure. (Integrate from −Rn to Rn on the real line and close by
a semicircle in the upper half plane; let n → ∞. The above estimate ensures that
the integral over the semicircle vanishes in the limit.) The same argument works
for F#/E. As explained above, this completes the proof.

The proof of Theorem 4.2 will depend on an asymptotic formula for the Titchmarsh-
Weyl m-function. This subject has been studied systematically and in considerable
depth (see, for example, [2, 15, 17, 19, 27]). We will only need a rather straightfor-
ward result whose proof we include for the reader’s convenience.

Given V ∈ L1(0, N), we extend V to (0,∞) by setting it equal to zero on (N,∞).
Denote the spectral measure and the m-function of the half line problem (as usual,
with Neumann boundary conditions y′(0) = 0) by ρ(N) and m(N), respectively.
We now briefly review some basic facts about m(N) and ρ(N); this material can be
found, for example, in [10, 21]. We can obtain m(N) as follows: Let f(x, k) be the
Jost solution. In other words, f solves (3.1) with z = k2 and f(x, k) = eikx for
x ≥ N . Define a meromorphic function MN by

MN (k) = − f(0, k)
f ′(0, k)

.

Then, since f(·, k) ∈ L2(0,∞) for k ∈ C+, we have that m(N)(k2) = MN (k) for
these k. More precisely, this formula gives the meromorphic continuation of the
function m(N), which is originally defined on C+, to C \ [0,∞). The m-function
m(N) has only finitely many poles in this region. They all lie on (−∞, 0), and
they are just the eigenvalues of −d2/dx2 + V (x) on L2(0,∞). For k > 0, the limit
limε→0+m

(N)(k2 + iε) exists. We will denote this limit simply by m(N)(k2); we
then have that m(N)(k2) = MN (k) for all k > 0 (note, however, that MN (−k) does
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not give the correct value but the complex conjugate of m(N)(k2) because k2 is now
approached from the lower half plane).

From these facts, we immediately get the following description of ρ(N). Denote
the finitely many negative eigenvalues by −κ2

n, κn > 0. Then

ρ(N) =
∑
n

ρ(N)({−κ2
n})δ−κ2

n
+

1
π
χ(0,∞)(λ)Im MN (

√
λ) dλ.

We will also need the m-function m0 and the spectral measure ρ0 for zero potential.
The following formulae hold:

m0(z) = (−z)−1/2, ρ0 = χ(0,∞)(λ)
dλ

π
√
λ
.(4.9)

In the first equation, which holds for z ∈ C+, the square root must be chosen so
that Im m0 > 0. Clearly, m0 can then be holomorphically continued to C \ [0,∞).
This continuation will also be denoted by m0. Finally, just as for m(N), we put
m0(λ) ≡ limε→0+m0(λ+ iε) for λ > 0.

Lemma 4.3. a) The limit limk→0 kMN (k) exists.
b) For Im k ≥ 0, k /∈ (−∞, 0], we have that

m(N)(k2)−m0(k2) =
1
k2

∫ N

0

V (x)e2ikx dx+O(|k|−3).

Proof. a) If y1, y2 both solve (3.1), then the Wronskian y′1y2−y1y
′
2 is constant. By

computing the Wronskian of f(·, k) and f(·,−k) at x = 0 and x = N , we therefore
see that

f ′(0, k)f(0,−k)− f(0, k)f ′(0,−k) = 2ik.

Take the derivative with respect to k (writing ˙≡ d
dk ) and then set k = 0. We obtain

f(0, 0)ḟ ′(0, 0)− ḟ(0, 0)f ′(0, 0) = i,

and thus it is not possible that f ′(0, k) and ḟ ′(0, k) vanish simultaneously at k = 0.
Therefore a possible pole of MN at k = 0 must be of order one.

b) Put g(x, k) = f(x, k)e−ikx. Then, basically by the variation of constants
formula, g is the unique solution of the integral equation

g(x, k) = 1 +
1

2ik

∫ N

x

(
e2ik(t−x) − 1

)
V (t)g(t, k) dt.

If Im k ≥ 0 and |k| ≥ 2‖V ‖L1(0,N), this implies the a priori estimate ‖g‖∞ ≤ 2. So
for these k, we have |g(x, k)− 1| ≤ 2‖V ‖1/|k|. This in turn shows that

g′(x, k) = −
∫ N

x

V (t)e2ik(t−x) dt+O(|k|−1).

Hence for large |k|,

m(N)(k2) = MN (k) = − f(0, k)
f ′(0, k)

=
−g(0, k)

ikg(0, k) + g′(0, k)

=
i

k

1

1 + g′(0,k)
ikg(0,k)

=
i

k

(
1− g′(0, k)

ikg(0, k)
+O(|k|−2)

)

=
i

k
+

1
k2

∫ N

0

V (t)e2ikt dt+O(|k|−3),
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as desired, since m0(k2) = i/k. For small k, there is nothing to prove.

Proof of Theorem 4.2. Suppose that an F ∈ SN is given and write, according to
Theorem 4.1,

F (z) =
∫ N

0

f(t) cos
√
zt dt

with f ∈ L2(0, N). Introduce the (signed) Borel measure σN by σN = ρ(N) − ρ0.
Theorem 3.2b) allows us to compute the norm of F as

‖F‖2SN =
∫
R

|F (λ)|2 dρ(N)(λ) =
∫
R

|F (λ)|2 dρ0(λ) +
∫
R

|F (λ)|2 dσN (λ).(4.10)

The two integrals in this last expression converge absolutely because the map f 7→ F
is unitary from L2(0,∞) onto L2(R, dρ0) – in fact, it is just the U from (3.3) for
zero potential. This observation also says that∫

R

|F (λ)|2 dρ0(λ) =
∫ N

0

|f(t)|2 dt.

It remains to analyze the last integral from (4.10). Using the identity

cosx cos y =
1
2

(cos(x− y) + cos(x+ y)) ,

we can write it in the form∫ ∞
−∞
|F (λ)|2 dσN (λ) =

∫ ∞
−∞

dσN (λ)
∫ N

0

ds

∫ N

0

dtf(s)f(t) cos
√
λs cos

√
λt

=
1
2

∫ ∞
−∞

dσN (λ)
∫ N

0

ds

∫ N

0

dtf(s)f(t)
(

cos
√
λ(s− t) + cos

√
λ(s+ t)

)
.(4.11)

Formally, this is of the desired form with φ(x) =
∫

cos
√
λx dσN (λ), but this needs

to be interpreted carefully because the integral “defining” φ will not, in general, be
absolutely convergent.

Our strategy will be to first define φ as a distribution and then prove that it is
actually an absolutely continuous function. More precisely, the contribution coming
from λ ∈ (0,∞) will be treated in this way.

So we define a tempered distribution φ+ ∈ S ′ as follows. Let g be a test function
from the Schwartz space S. Recall that this means that g is infinitely differentiable
and supx∈R |x|m|g(n)(x)| <∞ for all m,n ∈ N0. Then φ+ acts on g by

(φ+, g) =
∫ ∞

0

dσN (λ)
∫ ∞
−∞

dx g(x) cos
√
λx.

This is well defined because
∫
g(x) cos

√
λx dx is rapidly decreasing in λ and from

Lemma 4.3 and the preceding material we have the a priori estimate |σN |([0, R]) ≤
C
√
R. Thus the integral certainly converges. It is also clear that φ+ is linear and

continuous in the topology of S, so indeed φ+ ∈ S ′. Note that formally, φ+ is just
φ+(x) =

∫∞
0

cos
√
λx dσN (λ).
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The Fourier transform of φ+ is, by definition, the tempered distribution φ̂+

acting on test functions g by (φ̂+, g) = (φ+, ĝ). We compute

(φ+, ĝ) =
1
2

∫ ∞
0

dσN (λ)
∫ ∞
−∞

dx ĝ(x)
(
ei
√
λx + e−i

√
λx
)

=
√
π

2

∫ ∞
0

dσN (λ)
(
g(
√
λ) + g(−

√
λ)
)

=

√
2
π

∫ ∞
0

Im (m(N) −m0)(k2) (g(k) + g(−k)) k dk

=

√
2
π

∫ ∞
−∞

g(k)|k| Im (m(N) −m0)(k2) dk,

and hence φ̂+ is a function and

φ̂+(k) =

√
2
π
|k| Im (m(N) −m0)(k2).(4.12)

From Lemma 4.3 and the formula for m0, we see that φ̂+ is continuous and φ̂+(k) =
O(|k|−1) for large |k|. In fact, we get the more precise information that

φ̂+(k) =

√
2
π

1
|k|

∫ N

0

V (x) sin 2|k|x dx+O(k−2)

=
1√
2π

1
ik

∫ N

0

V (x)
(
e2ikx − e−2ikx

)
dx+O(k−2)

=
1
ik
ŴN (k) +O(k−2),

where

WN (x) =


−(1/2)V (x/2) 0 < x < 2N
(1/2)V (−x/2) −2N < x < 0
0 |x| > 2N

.

Therefore the (distributional) derivative φ′+ of φ+ has a Fourier transform of the
form

(φ′+)̂ (k) = ikφ̂+(k) = ŴN (k) + R̂N (k),

where R̂N is a continuous function and R̂N (k) = O(|k|−1). It follows that

φ′+(x) = WN (x) +RN (x),

with RN ∈ L2.
In particular, φ′+ ∈ S ′ is a locally integrable function, and as a consequence, φ+

is an absolutely continuous function. We define

φ(x) =
∫ 0

−∞
cos
√
λx dσN (λ) + φ+(x) =

∑
ρ(N)({−κ2

n}) coshκnx+ φ+(x),

and we verify that this φ has the desired properties.
We know already that φ+ is absolutely continuous. Its Fourier transform, φ̂+, is

real valued and even (compare (4.12)), so φ+ has these properties, too. The (finite)
sum

∑
ρ(N)({−κ2

n}) coshκnx manifestly is a smooth, real valued, even function, so
we have established that φ is absolutely continuous, real valued, and even.
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To show that φ(0) = 0, we use the formula

(m(N) −m0)(k2) =
∫ ∞
−∞

dσN (λ)
λ− k2

(k ∈ C+),

which follows at once from the Herglotz representations of m(N) and m0 (see, e.g.,
[21]). We can Fourier transform the denominator,

1
λ− k2

=
i

k

∫ ∞
0

cos
√
λt eikt dt (k ∈ C+, λ > 0),

to write this in the form

(m(N) −m0)(k2) =
∑ ρ(N)({−κ2

n})
−κ2

n − k2
+
i

k

∫ ∞
0

dσN (λ)
∫ ∞

0

dt eikt cos
√
λt.(4.13)

We now take a closer look at this last integral:∫ ∞
0

dσN (λ)
∫ ∞

0

dt eikt cos
√
λt =

2
π

∫ ∞
0

dl l Im (m(N) −m0)(l2)
∫ ∞

0

dt eikt cos lt

=
1√
2π

∫ ∞
−∞

dl φ̂+(l)
∫ ∞

0

dt eikt cos lt

=
1√
2π

∫ ∞
−∞

dl φ̂+(l)
∫ ∞

0

dt eikte−ilt.

This last expression equals
∫
φ̂+ ĥ, where h(t) = χ(0,∞)(t)eikt. Since we are as-

suming that k ∈ C+, this function is in L2, as is φ̂+, and thus we may use the
Plancherel identity to obtain the final result

(m(N) −m0)(k2) =
∑ ρ(N)({−κ2

n})
−κ2

n − k2
+
i

k

∫ ∞
0

φ+(t)eikt dt (k ∈ C+).

Note that on a formal level, this may be derived very easily from (4.13) because
the last term of (4.13) looks like φ+ applied to (i/k)h. However, h is not a test
function!

If we assume that in addition Im k > maxκn, then
∫∞

0
φ(t)eikt dt exists and we

get the more compact formula

(m(N) −m0)(k2) =
i

k

∫ ∞
0

φ(t)eikt dt.

We now specialize to k = iy, y →∞, and integrate by parts. This gives

m(N)(−y2)−m0(−y2) =
φ(0)
y2

+
1
y2

∫ ∞
0

φ′(t)e−yt dt.

Since φ′+ ∈ L1 + L2, the integral goes to zero by dominated convergence, hence

m(N)(−y2)−m0(−y2) =
φ(0)
y2

+ o(y−2) (y →∞).

On the other hand, Lemma 4.3b) implies that m(N)(−y2) − m0(−y2) = o(y−2).
Therefore, φ(0) = 0.

Let Kφ : L2(0, N)→ L2(0, N) be the integral operator defined in (4.1), with the
φ constructed above. We still have to establish the crucial property of φ, namely,
the fact that the integral from (4.11) equals 〈f,Kφf〉 for all f ∈ L2(0, N).
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We first consider the case when f ∈ C∞0 (0, N), and we treat explicitly only the
first term from (4.11), which contains cos

√
λ(s − t). Introduce the new variables

R = s+ t, r = s− t. Then we have∫ ∞
−∞

dσN (λ)
∫ N

0

∫ N

0

ds dt f(s)f(t) cos
√
λ(s− t)

=
1
2

∫ ∞
−∞

dσN (λ)
∫ ∞
−∞

dr cos
√
λr

∫ ∞
−∞

dR f

(
R+ r

2

)
f

(
R− r

2

)
=
∫ ∞
−∞

dσN (λ)
∫ ∞
−∞

dr g(r) cos
√
λr.

Here, we have put

g(r) ≡ 1
2

∫ ∞
−∞

dR f

(
R+ r

2

)
f

(
R− r

2

)
.(4.14)

Note that g ∈ C∞0 (−N,N). In particular, g is an admissable test function, and
thus the following manipulations are justified:∫ ∞

−∞
dσN (λ)

∫ ∞
−∞

dr g(r) cos
√
λr

=
∑

ρ({−κ2
n})

∫ ∞
−∞

g(r) coshκnr dr +
∫ ∞

0

dσN (λ)
∫ ∞
−∞

dr g(r) cos
√
λr

=
∫ ∞
−∞

dr g(r)
∑

ρ({−κ2
n}) coshκnr +

∫ ∞
−∞

φ+(r)g(r) dr

=
∫ ∞
−∞

φ(r)g(r) dr.

Finally, we can write out g (see (4.14)) and transform back to the original variables
(s, t); we obtain the expression∫ N

0

∫ N

0

ds dt f(s)f(t)φ(s− t).

If we combine this with the result of the analogous computation for the term in-
volving cos

√
λ(s+ t), then we get indeed that

1
2

∫ ∞
−∞

dσN (λ)
∫ N

0

ds

∫ N

0

dt f(s)f(t)
(

cos
√
λ(s− t) + cos

√
λ(s+ t)

)
=

1
2

∫ N

0

∫ N

0

ds dt f(s)f(t) (φ(s− t) + φ(s+ t))

= 〈f,Kφf〉.

Using this in (4.10), (4.11), we see that

‖F‖2SN = 〈f, (1 +Kφ)f〉L2(0,N),(4.15)

as desired. So far, this has been proved for f ∈ C∞0 (0, N). To establish (4.15) in full
generality, fix f ∈ L2(0, N) and pick fn ∈ C∞0 (0, N) with ‖fn−f‖L2(0,N) → 0. From
the proof of Theorem 4.1 (see, in particular, (4.4)) we know that there is a constant
C > 0 so that for all G ∈ SN , the inequality ‖G‖SN ≤ C‖G‖S(0)

N

holds, where S(0)
N is
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the de Branges space for zero potential. Hence, writing Fn(z) =
∫
fn(t) cos

√
zt dt,

we deduce that

‖Fn − F‖SN ≤ C‖Fn − F‖S(0)
N

= C‖fn − f‖L2(0,N) → 0.

Therefore, we can use (4.15) with f replaced by fn and then pass to the limit to
see that (4.15) holds for all f ∈ L2(0, N).

5. The inverse spectral theorem

Theorem 4.2 associates with each Schrödinger equation a function φ that deter-
mines the scalar product on the corresponding de Branges spaces SN . Recall also
that by Theorem 3.1, these de Branges spaces can be identified with the spaces
L2(R, dρβN ) from the spectral representation of the Schrödinger operators. So it
makes sense to think of φ (on [−2N, 2N ]) as representing the spectral data of
−d2/dx2 +V (x) (on L2(0, N), with suitable boundary conditions at the endpoints).
Our next result is the converse of Theorem 4.2. It says that every function φ that
has the properties stated in Theorem 4.2 comes from a Schrödinger equation. To
be able to formulate this concisely, we denote this set of φ’s by ΦN , so

ΦN = {φ : [−2N, 2N ]→ R : φ absolutely continuous, even, φ(0) = 0, 1 +Kφ > 0}.

The last condition of course refers to the integral operator Kφ on L2(0, N) that
was introduced in (4.1); we require that the self-adjoint operator 1+Kφ be positive
definite. In the situation of Theorem 4.2, this condition holds because 〈f, (1+Kφ)f〉
is a norm.

Theorem 5.1. For every φ ∈ ΦN , there exists a V ∈ L1(0, N) so that the norm
on the de Branges space SN associated with (3.1) is given by

‖F‖2SN = 〈f, (1 +Kφ)f 〉L2(0,N) (f ∈ L2(0, N)).

Here, F (z) =
∫
f(t) cos

√
zt dt, as in Theorem 4.1 .

We will take up the proof of Theorem 5.1 in Sect. 9. Let us first point out that
we also have uniqueness in both directions. In fact, uniqueness is, as usual, much
easier than existence.

Theorem 5.2. a) If V ∈ L1(0, N) is given, then the φ ∈ ΦN from Theorem 4.2 is
unique.
b) If φ ∈ ΦN is given, then the V ∈ L1(0, N) from Theorem 5.1 is unique.

This will also be proved in Sect. 9. We need some preparations; this will occupy
us for the following three sections.

6. Canonical systems I

A canonical system is a family of differential equations of the following form:

Ju′(x) = zH(x)u(x).(6.1)

Here, J =
(

0 −1
1 0

)
, and H(x) ∈ R2×2, the entries of H are integrable functions on

an interval (0, N), and H(x) ≥ 0 (i.e., H(x) is a positive semidefinite matrix) for
almost every x ∈ (0, N). We also assume that there is no nonempty open interval
I ⊂ (0, N) so that H = 0 almost everywhere on I. Finally, z ∈ C is the spectral
parameter.
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As usual, u : [0, N ] → C
2 is called a solution if u is absolutely continuous and

satisfies (6.1) almost everywhere.
Usually, one does not assume that H(x) 6≡ 0 on nonempty open sets, but drop-

ping this assumption does not add generality. Indeed, by letting

S0 = {x ∈ (0, N) : ∃ε > 0 : H(t) = 0 for a.e. t ∈ (x− ε, x+ ε)}

and introducing the new independent variable

ξ(x) =
∫ x

0

(1− χS0(t)) dt,

one may pass to an equivalent canonical system that satisfies our additional as-
sumption.

A fundamental result (namely, Theorem 7.3) associates with every de Branges
space a canonical system (6.1). Therefore, canonical systems are a central object
in the theory of de Branges spaces.

Let u(x, z), v(x, z) be the solutions of (6.1) with the initial values u(0, z) =
(

1
0

)
,

v(0, z) =
(

0
1

)
. We will mainly work with u(x, z). Just as in Sect. 3, we can build

a de Branges function from u by defining EN (z) = u1(n, z) + iu2(N, z). Here, a
pathological case can occur: if H(x) =

(
0 0
0 H22(x)

)
on (0, N), then u(N, z) =

(
1
0

)
and EN (z) ≡ 1. According to our definition in Sect. 2, this is not a de Branges
function. So it will be convenient to slightly extend this definition and to also admit
non-zero constants as de Branges functions. The corresponding de Branges space
is simply defined to be the zero space.

Proposition 6.1. EN (z) = u1(N, z) + iu2(N, z) is a de Branges function. The
corresponding reproducing kernel Jz is given by

Jz(ζ) =
∫ N

0

u∗(x, z)H(x)u(x, ζ) dx.

Proof. The formula for Jz follows by a calculation, which is analogous to the discus-
sion preceding Theorem 3.1. One uses the fact that u(x, z) = u(x, z); we leave the
details to the reader. Also, just as in Sect. 3, by taking z = ζ ∈ C+, the formula for
Jz implies that EN is a de Branges function. In this context, observe the following
fact: if ∫ N

0

u∗(x, z)H(x)u(x, z) dx = 0

for some z ∈ C, then H(x)u(x, z) = 0 for almost every x ∈ (0, N), hence u(x, z) =
u(0, z) =

(
1
0

)
. This in turn implies that H11 = 0 almost everywhere, and we are in

the trivial case EN (z) ≡ 1. In the opposite case,
∫ N

0
u∗(x, z)H(x)u(x, z) dx > 0 for

all z ∈ C, and EN is a genuine de Branges function.

Eventually, we will again identify the corresponding de Branges space B(EN ) with a
space L2(R, dρβN ), where ρβN is a spectral measure of (6.1), just as we did in the case
of Schrödinger equations in Theorem 3.1. However, things are more complicated
now, basically for two reasons: First of all, if (6.1) is to be interpreted as an
eigenvalue equation Tu = zu, then, formally, the operator T should be Tu =
H−1Ju′, but H(x) need not be invertible. Consequently, one has to work with
relations instead of operators. Second, on so-called singular intervals, equation
(6.1) actually is a difference equation in disguise. These points will be studied in
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some detail in Sect. 10. Our discussion of canonical systems will be modelled on
the (simpler) analysis of Sect. 3. For a functional analytic treatment of canonical
systems, see [18]. Reference [9] also contains a lot of material on canonical systems,
though in somewhat implicit form.

7. Four theorems of de Branges

In this section we state, without proof, four general results of de Branges on
de Branges spaces which will play an important role in our treatment of the inverse
problem for Schrödinger operators. The first result is a useful tool for recognizing
de Branges spaces. It is Theorem 23 of [9]. For an alternate proof, see [12, Sect.
6.1].

Theorem 7.1. Let H be a Hilbert space whose elements are entire functions. Sup-
pose that H has the following three properties:
a) For every z ∈ C, point evaluation F 7→ F (z) is a bounded linear functional.
b) If F ∈ H has a zero at w ∈ C, then G(z) = z−w

z−wF (z) belongs to H and
‖G‖ = ‖F‖.
c) F 7→ F# is an isometry on H.

Then H is a de Branges space: There exists a de Branges function E, so that
H = B(E) and ‖F‖H = ‖F‖B(E) for all F ∈ H.

The converse of Theorem 7.1 is also true (and easily proved): Every de Branges
space satisfies a), b), and c). In fact, in [5], the conditions of Theorem 7.1 are used
to define de Branges spaces.

The de Branges function E is not uniquely determined by the Hilbert space
B(E). The situation is clarified by [5, Theorem I]. Given E, we introduce the
entire functions A, B by

A(z) =
E(z) + E#(z)

2
, B(z) =

E(z)− E#(z)
2i

.

Theorem 7.2. Let E1, E2 be de Branges functions. Then B(E1) = B(E2) (as
Hilbert spaces) if and only if there exists T ∈ R2×2, detT = 1, so that(

A2(z)
B2(z)

)
= T

(
A1(z)
B1(z)

)
.

The next two results lie much deeper. They are central to the whole theory of
de Branges spaces. We will not state the most general versions here; for this, the
reader should consult [9]. The following definition will be useful to avoid (for us)
irrelevant technical problems. A de Branges space B(E) is called regular if

F (z) ∈ B(E) =⇒ F (z)− F (z0)
z − z0

∈ B(E).(7.1)

Here z0 is any fixed complex number. The definition is reasonable because it can
be shown that if (7.1) holds for one z0 ∈ C, then it holds for all z0 ∈ C (compare [9,
Theorem 25]). The condition (7.1) also plays an important role in [9]. According to
(a more general version of) Theorem 7.3 below, every de Branges space comes from
a (possibly singular) canonical system; the regular spaces are precisely those that
come from regular problems, that is, x = 0 is not a singular endpoint. Jumping
ahead, we can also remark that condition (7.1) ensures the existence of a conjugate
mapping. See also [31] for other aspects of (7.1).
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Theorem 7.3. If B(E) is a regular de Branges space, E(0) = 1, and N > 0 is
given, then there exists a canonical system (6.1) (that is, there exists an integrable
function H : (0, N)→ R

2×2 with H(x) ≥ 0 almost everywhere, H 6≡ 0 on nonempty
open sets), such that E(z) = EN (z), where EN is determined from (6.1) as in
Proposition 6.1.

Moreover, H(x) can be chosen so that tr H(x) is a (positive) constant.

De Branges proved various results of this type; see [6, Theorems V, VII] and [9,
Theorems 37, 40]. The version given here follows by combining [6, Theorem VII]
with [9, Theorem 27]. In fact, this is not literally true because de Branges uses the
equation

y(b)J − y(a)J = z

∫ b

a

y(t)dm(t)(7.2)

instead of (6.1). Here, m is a matrix valued measure. If m is absolutely continuous,
dm(t) = m′(t) dt, then (7.2) can be written as a differential equation y′J = zyH,
with H = m′, and the further change of variable u(x, z) = y∗(x,−z) then gives
(6.1). In [9], m is only assumed to be continuous, but then one can change the
independent variable to ξ(t) = tr m((0, t)) to get an absolutely continuous measure.
This transformation automatically leads to a system with tr H(x) ≡ 1, and this is
how one proves the last statement of Theorem 7.3. A further transformation of the
type ξ → aξ with a suitable a > 0 then yields a problem on (0, N) again.

There is no apparent reason for preferring one of these equivalent ways of writing
canonical systems (see (6.1) and (7.2)), but it appears that the form we use here
(namely, (6.1)) has become the most common.

The assumption that E(0) = 1 is just a normalization; it does not restrict
the applicability of Theorem 7.3. In fact, one can just use Theorem 7.2 with
T =

(
A(0)|E(0)|−2 B(0)|E(0)|−2

−B(0) A(0)

)
to pass to an equivalent E with E(0) = 1. This will

always work because de Branges functions associated with regular spaces do not
have zeros on the real line.

Theorem 7.3, combined with the material from Sect. 10 (especially (10.5)), is
the promised (extremely) general version of the Paley-Wiener Theorem. One can
also view Theorem 7.3 as a basic result in inverse spectral theory: given “spectral
data” in the form of a de Branges function E, the theorem asserts the existence
of a corresponding differential equation. In this paper, we will use Theorem 7.3 in
this second way.

As a final remark on Theorem 7.3, we would like to point out that H(x) is
uniquely determined by E(z) and N if one normalizes appropriately. (One may re-
quire that tr H(x) be constant, as in the last part of Theorem 7.3, and

∫ ε
0
H11(t) dt >

0 for all ε > 0.) To prove this, the basic idea is to proceed as in the proof of Theo-
rem 5.2b) (which will be discussed in Sect. 9), but things are more complicated here
and one needs material from Sect. 10. We do not need this uniqueness statement
in this paper.

Theorem 7.4. Let B(E), B(E1), B(E2) be regular de Branges spaces and assume
that B(E1) and B(E2) are isometrically contained in B(E). Then either B(E1) is
isometrically contained in B(E2) or B(E2) is isometrically contained in B(E1).

This is a special case of [9, Theorem 35]. See also [12, Sect. 6.5] for a proof.
Theorem 7.4 clearly is a strong structural result. The de Branges subspaces of a

given space are totally ordered by inclusion. As an illustration, take B(E) = SN ,
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the de Branges space coming from a Schrödinger equation on the interval (0, N).
Then it can be deduced from Theorem 7.4 that the chain of spaces {Sx : 0 ≤ x ≤ N}
is a complete list of the de Branges spaces that are subspaces of SN .

8. Canonical systems II

Theorem 7.3 associates a canonical system to every (regular) de Branges space.
Conversely, we have seen in Sections 3 and 6 how Schrödinger equations and canon-
ical systems generate de Branges spaces. This recipe works for other equations as
well (Dirac, Sturm-Liouville, Jacobi difference equation). So, in a sense, canonical
systems are the most general formally symmetric, second order differential systems
(here, by “order” we mean order of differentiation times number of components).
In particular, every Schrödinger equation can be written as canonical system by
a simple transformation. Namely, given a Schrödinger equation (3.1), let y1, y2

be the solutions of (3.1) with z = 0 with the initial values y1(0) = y′2(0) = 1,
y′1(0) = y2(0) = 0, and put T (x) =

( y1(x) y2(x)

y′1(x) y′2(x)

)
. Now if y(x, z) solves (3.1), then

the vector function u defined by u(x, z) = T−1(x)
( y(x,z)

y′(x,z)

)
solves (6.1) with

H(x) =
(

y2
1(x) y1(x)y2(x)

y1(x)y2(x) y2
2(x)

)
.

This is shown by direct computation. Note that this H has the required properties:
its entries are integrable (in fact, they have absolutely continuous derivatives), and
H(x) ≥ 0, H(x) 6= 0 for every x.

Conversely, from a canonical system of this special form, one can go back to
a Schrödinger equation. We state this separately for later use. By AC(n)[0, N ]
we denote the set of (locally integrable) functions whose nth derivative (in the
sense of distributions) is in L1(0, N). Equivalently, f ∈ AC(n)[0, N ] precisely if
f, f ′, . . . , f (n−1) are absolutely continuous on [0, N ].

Proposition 8.1. Let h, k ∈ AC(2)[0, N ] be real valued functions, and suppose that
h(0) = 1, h′(0) = 0, and

h(x)k′(x)− h′(x)k(x) = 1.(8.1)

Let

H(x) =
(

h2(x) h(x)k(x)
h(x)k(x) k2(x)

)
.

Then, if u(x, z) solves (6.1) with this H, then

y(x, z) := h(x)u1(x, z) + k(x)u2(x, z)

solves (3.1) with V (x) = h′′(x)k′(x)−h′(x)k′′(x). Moreover, the de Branges spaces
generated by (3.1) and (6.1) as in Sect. 3 and Proposition 6.1, respectively, are
identical.

Proof. The fact that y solves (3.1) with V = h′′k′ − h′k′′ is checked by direct
computation. Note that hk′′ = h′′k; this follows by differentiating (8.1). Also,
hu′1 + ku′2 = 0 and thus

y′(x, z) = h′(x)u1(x, z) + k′(x)u2(x, z).

In particular, this relation shows that y(·, z) ∈ AC(2)[0, N ].
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To compare the de Branges spaces, we must specialize to the solution u with the
initial values u1(0, z) = 1, u2(0, z) = 0. The corresponding y satisfies y(0, z) = 1,
y′(0, z) = 0, and hence is the solution from which the de Branges function of the
Schrödinger equation is computed. The values at x = N are related by(

y(N, z)
y′(N, z)

)
=
(
h(N) k(N)
h′(N) k′(N)

)
u(N, z).

The final claim now follows from Theorem 7.2.

9. Starting the proofs

Proof of Theorem 5.2. a) If we know V , we can solve the Schrödinger equation (3.1)
(in principle, that is) and find EN (z). This function in turn determines the scalar
products [F,G]SN , and we have that

[F,G]SN = 〈f, (1 +Kφ)g〉L2(0,N),

so we know the operator Kφ on L2(0, N). Hence we know the kernel K(s, t) almost
everywhere on [0, N ]× [0, N ] (with respect to two-dimensional Lebesgue measure),
but K is continuous, so we actually know the kernel everywhere, and φ(2t) =
2K(t, t), so φ on [0, 2N ] is uniquely determined by V on (0, N). As φ is even, we
of course automatically know φ on [−2N, 2N ] then.

b) Suppose that we have two potentials V1, V2 ∈ L1(0, N), for which the scalar
product on the corresponding de Branges spaces is determined by one and the same
φ ∈ ΦN . In other words, S(1)

N = S
(2)
N (as de Branges spaces). Now φ on [−2N, 2N ]

determines the de Branges spaces S(i)
x (i = 1, 2) for every x ∈ (0, N ], so we actually

have that also S(1)
x = S

(2)
x for these x. By Theorem 7.2,(

u2(x, z)
u′2(x, z)

)
= T (x)

(
u1(x, z)
u′1(x, z)

)
(0 < x ≤ N),

where T (x) ∈ R2×2, detT (x) = 1. Comparison of the large z asymptotics with
the help of (4.3), (4.5) shows that T11 = 1, T12 = 0, so u1 = u2. As Vi(x) =
u′′i (x, 0)/ui(x, 0), this of course implies that V1 = V2.

We now begin the proof of Theorem 5.1. It is rather obvious how to get started.
Let φ ∈ ΦN be given. If the theorem is true, then, by Theorem 4.1, the spaces

Hx =
{
F (z) =

∫ x

0

f(t) cos
√
zt dt : f ∈ L2(0, x)

}
,(9.1)

endowed with the scalar products

[F,G]Hx = 〈f, (1 +Kφ)g〉L2(0,x),(9.2)

must be de Branges spaces for 0 < x ≤ N . This can be confirmed right away.

Lemma 9.1. Hx with the scalar product [·, ·]Hx is a regular de Branges space. The
de Branges function Ex for which Hx = B(Ex) may be chosen so that Ex(0) = 1.

If 0 < x ≤ y ≤ N , then Hx is isometrically contained in Hy.

Proof. We will use Theorem 7.1. Hx obviously is a linear space consisting of entire
functions. [·, ·]Hx is a scalar product because 1 + Kφ > 0 (strictly speaking, we
know this for the operator on L2(0, N), but 〈f, (1 +Kφ)g〉L2(0,x) for f, g ∈ L2(0, x)
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can of course also be evaluated in the bigger space L2(0, N)). Kφ is compact, so
we actually have that 1 +Kφ ≥ δ > 0. Thus

δ‖f‖2L2(0,x) ≤ ‖F‖
2
Hx ≤ C‖f‖

2
L2(0,x),

and now completeness of Hx follows from the completeness of L2(0, x).
We now verify conditions a), b), c) of Theorem 7.1. Condition a) is obvious from

|F (z)| ≤ e|z|
1/2x

∫ x

0

|f(t)| dt ≤ x1/2e|z|
1/2x‖f‖ ≤ (x/δ)1/2e|z|

1/2x‖F‖Hx .

It is also clear that c) holds since F#(z) =
∫
f(t) cos

√
zt dt, so F# ∈ Hx and, as

K is real valued,

‖F#‖2 = 〈f, (1 +Kφ)f〉 = 〈f, (1 +Kφ)f〉 = ‖F‖2.

To prove b), fix w ∈ C and F ∈ Hx with F (w) = 0. Extend the f ∈ L2(0, x)
corresponding to F to (−x, x) by letting f(−t) = f(t) (0 < t < x). Then

F (k2) =
1
2

∫ x

−x
f(t)e−ikt dt =

√
π

2
f̂(k).

The function f̂ is entire, even, obeys |f̂(k)| ≤ Cex|k|, its restriction to R belongs to
L2(R) and f̂(±

√
w) = 0. Put

ĝ(k) =
k2 − w
k2 − w

f̂(k).

Then ĝ is also entire, |ĝ(k)| ≤ Cex|k|, and the restriction of ĝ to R is square
integrable. Hence the Paley-Wiener Theorem applies: There exists g ∈ L2(−x, x)
so that

ĝ(k) =
1√
2π

∫ x

−x
g(t)e−ikt dt.

Since ĝ is even, g must also be even. It follows that

k2 − w
k2 − w

F (k2) =
√
π

2
ĝ(k) =

1
2

∫ x

−x
g(t)e−ikt dt =

∫ x

0

g(t) cos kt dt,

and hence the function G(z) = z−w
z−wF (z) is of the form

G(z) =
∫ x

0

g(t) cos
√
zt dt,

with g ∈ L2(0, x), so G ∈ Hx. We now calculate the norm of G. In this calculation,
we extend φ to a function on R by setting it equal to zero outside [−2x, 2x]. We
do this in order to have a well behaved Fourier transform φ̂. Note that Kφ, viewed
as an operator on L2(0, x), does not depend on the values of φ(t) for |t| > 2x. We
also rewrite 〈g, (1 +Kφ)g〉L2(0,x). Namely, since g is even and the integral kernel K
of Kφ satisfies

K(s, t) = K(−s, t) = K(s,−t) = K(−s,−t),

we have that

〈χ(0,x)g,Kφχ(0,x)g〉L2(0,x) =
1
8

∫ x

−x
ds

∫ x

−x
dt g(s)g(t) (φ(s− t) + φ(s+ t)) .
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Furthermore, using the substitution s→ −s in the second term, we can write this
in the form

〈χ(0,x)g,Kφχ(0,x)g〉L2(0,x) =
1
4

∫ x

−x
ds

∫ x

−x
dt g(s)g(t)φ(s− t) =

1
4
〈g, φ ∗ g〉L2(−x,x),

where, as usual, the star denotes convolution. Having made these preliminary
observations and using the fact that |f̂(k)| = |ĝ(k)| for real k, we obtain

4‖G‖2Hx = 4〈χ(0,x)g, (1 +Kφ)χ(0,x)g〉L2(0,x) = 2‖g‖2L2(−x,x) + 〈g, φ ∗ g〉L2(−x,x)

= 2‖ĝ‖2L2(R) + 〈ĝ, φ̂ ĝ〉L2(R) =
∫ ∞
−∞
|ĝ(k)|2

(
2 + φ̂(k)

)
dk

=
∫ ∞
−∞

∣∣∣f̂(k)
∣∣∣2 (2 + φ̂(k)

)
dk

= 2‖f̂‖2L2(R) + 〈f̂ , φ̂ f̂〉L2(R) = 2‖f‖2L2(−x,x) + 〈f, φ ∗ f〉L2(−x,x)

= 4〈χ(0,x)f, (1 +Kφ)χ(0,x)f〉L2(0,x) = 4‖F‖2Hx ,
as desired. Theorem 7.1 now shows that Hx is a de Branges space.

It is clear that for every λ ∈ R, there exists an F ∈ Hx with F (λ) 6= 0. Thus, by
the definition of de Branges spaces, the corresponding de Branges function cannot
have zeros on the real line. Using Theorem 7.2, we can therefore normalize so that
Ex(0) = 1 (exactly as in the remark following Theorem 7.3).

We still must show that the de Branges space Hx is regular. We will check
condition (7.1) with z0 = 0. So let F ∈ Hx, F (z) =

∫ x
0
f(t) cos

√
zt dt, with

f ∈ L2(0, x). Then

g(t) :=
∫ x

t

f(s)(t− s) ds

is in AC(2)[0, x] (so, in particular, g ∈ L2(0, x)), and g′(t) =
∫ x
t
f(s) ds, g′′ = −f .

By integrating by parts twice, we thus see that∫ x

0

g(t) cos
√
zt dt =

sin
√
zt√
z

∫ x

t

f(s)(t− s) ds
∣∣∣∣t=x
t=0

−
∫ x

0

dt
sin
√
zt√
z

∫ x

t

ds f(s)

=
cos
√
zt

z

∫ x

t

f(s) ds
∣∣∣∣t=x
t=0

+
∫ x

0

f(t)
cos
√
zt

z
dt

=
F (z)− F (0)

z
,

hence this latter combination is in Hx.
The final claim of the lemma is obvious from the construction of the spaces Hx.

We have made this statement explicit mainly because of its importance.

The next step in the proof of Theorem 5.1 is to apply Theorem 7.3 to the regular
de Branges space HN = B(EN ). We obtain H : (0, N) → R

2×2, with entries in
L1(0, N) and H(x) ≥ 0 for almost every x ∈ (0, N), tr H(x) = τ > 0, such that
EN (z) is exactly the de Branges function associated with the canonical system (6.1)
as in Proposition 6.1.

Actually, we have obtained much more. We get a whole scale of de Branges
spaces in both cases. On the one hand, we have the spaces Hx = B(Ex) from
Lemma 9.1. On the other hand, we can consider the canonical system (6.1) on
(0, x) only; by Proposition 6.1, we get again de Branges spaces, which we denote
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by Bx. Our next major goal is to show that, possibly after a reparametrization of
the independent variable, Hx = Bx for all x ∈ [0, N ] (at the moment, we know this
only for x = N). One crucial input will be Theorem 7.4; however, we will also need
additional material on canonical systems. This topic will be resumed in the next
section.

The proof of Theorem 5.1 will then proceed as follows. The identity Hx = Bx
says that we have two realizations of the same chain of de Branges spaces: one
from Lemma 9.1 and a second one from the canonical system (6.1). By comparing
objects in these two worlds, we will get information on the matrix elements Hij(x)
of the H from (6.1). This will allow us to verify the hypotheses of Proposition 8.1;
so the spaces Hx we started with indeed come from a Schrödinger equation.

10. Canonical systems III

We now develop some material on the spectral representation of canonical sys-
tems. We consider equation (6.1) together with the boundary conditions

u2(0) = 0, u1(N) cosβ + u2(N) sinβ = 0.(10.1)

Here, β ∈ [0, π). As usual, z is called an eigenvalue if there is a nontrivial solution
to (6.1), (10.1). We can considerably simplify the whole discussion by excluding
certain “singular” values of β. In particular, it is convenient to assume right away
that β 6= π/2. Then zero is not an eigenvalue.

In particular, the following holds. If f ∈ L1(0, N) is given, then the inhomoge-
neous problem Ju′ = f together with the boundary conditions (10.1) has a unique
solution u which can be written in the form

u(x) =
∫ N

0

G(x, t)f(t) dt,

G(x, t) =
(

tanβ −χ(0,t)(x)
−χ(0,x)(t) 0

)
= G(t, x)∗.

We can now write the eigenvalue problem (6.1), (10.1) as an integral equation,
which is easier to handle. Of course, this is a standard procedure; compare, for
example, [16, Chapter VI]. Let LH2 (0, N) be the space of measurable functions
y : (0, N)→ C

2 satisfying

‖y‖2LH2 (0,N) ≡
∫ N

0

y∗(x)H(x)y(x) dx <∞.

The quotient of LH2 (0, N) by N = {y : ‖y‖ = 0} is a Hilbert space. As usual,
this space will again be denoted by LH2 (0, N), and we will normally not distinguish
between Hilbert space elements and their representatives. In a moment, we will
also use the similarly defined space LI2, where H is replaced by the 2 × 2 identity
matrix. The space LI2 can be naturally identified with L2 ⊕ L2.

As a preliminary observation, notice that a nontrivial solution y to (6.1), (10.1)
cannot be the zero element of LH2 (0, N). Indeed, if ‖y‖LH2 = 0, then H(x)y(x) = 0
almost everywhere, so (6.1) implies that y(x) = y(0). But since β 6= π/2, the
boundary conditions (10.1) then force y ≡ 0. A similar argument shows that
eigenfunctions associated with different eigenvalues also represent different elements
of LH2 (0, N).
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We now claim that λ is an eigenvalue of (6.1), (10.1) with corresponding eigen-
function y if and only if y ∈ LH2 (0, N) and y solves

y(x) = λ

∫ N

0

G(x, t)H(t)y(t) dt.(10.2)

Note that for y ∈ LH2 (0, N), (10.2) may be considered in the pointwise sense or
as an equation in LH2 (0, N). Fortunately, the two interpretations are equivalent.
More precisely, if (10.2) holds in LH2 (0, N), then we can simply define a particular
representative y(x) by the right-hand side of (10.2) (this right-hand side does not
depend on the choice of representative).

It is clear from the construction of G and the fact that solutions of (6.1) are con-
tinuous that eigenfunctions lie in LH2 (0, N) and solve (10.2) pointwise. Conversely,
if y ∈ LH2 (0, N), then Hy ∈ L1(0, N). So if y in addition solves (10.2), then it also
solves (6.1), (10.1) by construction of G again.

Now define a map

V : LH2 (0, N)→ LI2(0, N), y(x) 7→ H1/2(x)y(x).

Here, H1/2(x) is the unique positive semidefinite square root of H(x). In the sequel,
we will often use the fact that H(x) and H1/2(x) have the same kernel. V is an
isometry and hence maps LH2 unitarily onto its range R(V ) ⊂ LI2. Define an integral
operator L on LI2(0, N) by

L(x, t) = H1/2(x)G(x, t)H1/2(t),

(Lf)(x) =
∫ N

0

L(x, t)f(t) dt.

The kernel L is square integrable (by this we mean that
∫ N

0

∫ N
0
‖L∗L‖ dx dt <∞),

so L is a Hilbert-Schmidt operator and thus compact. Since L(x, t) = L∗(t, x), L is
also self-adjoint. The following lemma says that the eigenvalues of (6.1), (10.1) are
precisely the reciprocal values of the non-zero eigenvalues of L. The corresponding
eigenfunctions are mapped to one another by applying V .

Lemma 10.1. Let f ∈ LI2(0, N), λ 6= 0. Then the following statements are equiv-
alent:
a) Lf = λ−1f ;
b) f ∈ R(V ), and the unique y ∈ LH2 (0, N) with V y = f solves (10.2).

Proof. Note that for all g ∈ LI2, we have that (Lg)(x) = H1/2(x)w(x), where

w(x) =
∫ N

0

G(x, t)H1/2(t)g(t) dt

lies in LH2 , thus R(L) ⊂ R(V ). Now if a) holds, then f = λLf ∈ R(V ), so f = V y
for a unique y ∈ LH2 and

f(x) = H1/2(x)y(x) = λ(LV y)(x) = λH1/2(x)
∫ N

0

G(x, t)H(t)y(t) dt

for almost every x ∈ (0, N). In other words,

H1/2(x)

(
y(x)− λ

∫ N

0

G(x, t)H(t)y(t) dt

)
= 0
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almost everywhere, and this says that the expression in parantheses is the zero
element of LH2 , that is, (10.2) holds.

Conversely, if b) holds, we only need to multiply (10.2) from the left by H1/2(x)
to obtain a).

Let P : LI2 → LI2 be the projection onto the closed subspace R(V ) of LI2. Since

R(V )⊥ = {f ∈ LI2 : H(x)f(x) = 0 almost everywhere},

we have that L(1 − P ) = 0. Also, we have already observed that R(L) ⊂ R(V ) =
R(P ), so L = PL. Hence LP = PL, and thus R(P ) = R(V ) is a reducing subspace
for L. Let L0 : R(V ) → R(V ) be the restriction of L to R(V ). Then L0 is also
compact (in fact, Hilbert-Schmidt) and self-adjoint, and L = L0 ⊕ 0.

If we use this notation, then Lemma 10.1 says that the eigenfunctions of L0 with
non-zero eigenvalues precisely correspond to the eigenfunctions of (6.1), (10.1). The
kernel of L0 will also play a central role. To develop this, we now introduce two
important subspaces of LH2 . Namely, let

R(0,N) = {y ∈ LH2 (0, N) : ∃f ∈ AC(1)[0, N ],H(x)f(x) = 0 for a.e. x ∈ (0, N),

f2(0) = 0, f(N) = 0, Jf ′ = Hy},

R̃(0,N) = {y ∈ LH2 (0, N) : ∃f ∈ AC(1)[0, N ],H(x)f(x) = 0 for a.e. x ∈ (0, N),

f2(0) = 0, f1(N) cosβ + f2(N) sinβ = 0, Jf ′ = Hy}.

Recall that on a formal level, operators T associated with (6.1) should act as
Tf = H−1Jf ′, so (still formally) the relation Jf ′ = Hy says that y is an image
of f . Thus R̃(0,N) should be thought of as the space of images of zero; R(0,N) has
a similar interpretation. In the following lemma, we identify R̃(0,N) as the kernel
N(L0) of L0.

Lemma 10.2. N(L0) = V R̃(0,N).

Proof. If g ∈ R(V ) with L0g = 0 is given, write g(x) = H1/2(x)y(x) with y ∈ LH2 .
Then y obeys

H1/2(x)
∫ N

0

G(x, t)H(t)y(t) dt = 0(10.3)

in LI2(0, N), that is, for almost every x ∈ (0, N). Let f(x) =
∫ N

0
G(x, t)H(t)y(t) dt.

Then, by the construction of G, f ∈ AC(1)[0, N ], f satisfies the boundary conditions
(10.1), and Jf ′ = Hy; by (10.3), H(x)f(x) = 0 for almost every x ∈ (0, N). So
y ∈ R̃(0,N) and g = V y ∈ V R̃(0,N).

Conversely, suppose that g = V y for some y ∈ R̃(0,N). By definition of R̃(0,N),
there exists f ∈ AC(1)[0, N ], so that H(x)f(x) = 0 almost everywhere, f satisfies
the boundary conditions and Jf ′ = Hy. We have L0g = LV y = V f̃ , where f̃(x) =∫ N

0
G(x, t)H(t)y(t) dt. Again by construction of G, the function f̃ ∈ AC(1)[0, N ]

thus solves the following problem: f̃ satisfies the boundary conditions and Jf̃ ′ =
Hy. However, as noted at the beginning of this section, there is only one function
with these properties, hence f̃ = f , and therefore (L0g)(x) = H1/2(x)f(x) = 0
almost everywhere.
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Theorem 10.3. Suppose that β 6= π/2. Then the normed eigenfunctions of the
boundary value problem (6.1), (10.1),

Jy′(x) = zH(x)y(x), y2(0) = 0, y1(N) cosβ + y2(N) sinβ = 0,

form an orthonormal basis of the Hilbert space LH2 (0, N)	 R̃(0,N).

Proof. As L0 is compact and self-adjoint, the normed eigenfunctions of L0 (suitably
chosen in the case of degeneracies) form an orthonormal basis of R(V ). Also, the
normed eigenfunctions belonging to non-zero eigenvalues form an orthonormal basis
of R(V ) 	 N(L0). Now go back to LH2 , using the unitary map V −1 : R(V ) →
LH2 (0, N). By Lemma 10.2, N(L0) is mapped onto R̃(0,N), and by Lemma 10.1, the
preceding discussion and the fact that L = L0 ⊕ 0, the eigenfunctions of L0 with
non-zero eigenvalues precisely go to the eigenfunctions of (6.1), (10.1).

As in Sect. 3, we can introduce spectral measures ρβN . Define

ρβN =
∑

u1
u2

(N,λ)=− tan β

δλ
‖u(·, λ)‖2

LH2 (0,N)

.

The sum is over the eigenvalues {λn} of (6.1), (10.1) (which also depend on N and
β). Recall also that u(·, z) is the solution of (6.1) with u(0, z) =

(
1
0

)
. The map U

defined by

U : LH2 (0, N)	 R̃(0,N) → L2(R, dρβN ),

(Uf)(λ) =
∫ N

0

u∗(x, λ)H(x)f(x) dx

is unitary. Indeed, this is just a reformulation of Theorem 10.3 because U computes
the scalar products of f with the elements of the basis {u(·, λn)}. The u(·, λn)’s are
not normalized here, but this has been taken into account by choosing the correct
weights in the definition of ρβN .

For a further development of the theory of canonical systems, we need the fol-
lowing definition. Following [6, 9], we call x0 ∈ (0, N) a singular point if there exists
an ε > 0, so that on (x0 − ε, x0 + ε), H has the form

H(x) = h(x)Pϕ, Pϕ =
(

cos2 ϕ sinϕ cosϕ
sinϕ cosϕ sin2 ϕ

)
for some (x-independent) ϕ ∈ [0, π) and some h ∈ L1(x0 − ε, x0 + ε), h ≥ 0. Notice
that Pϕ is the projection onto eϕ =

( cosϕ
sinϕ

)
. Points that are not singular are called

regular points. Clearly, the set S of singular points,

S = {x ∈ (0, N) : x is singular},
is open, so it can be represented as a countable or finite union of disjoint, open
intervals:

S =
⋃

(an, bn).

On such an interval (an, bn), the angle ϕ = ϕn whose existence is (locally) guar-
anteed by the definition above must actually have the same value on the whole
interval for otherwise there would be regular points on (an, bn). We call the bound-
ary condition β at x = N regular if β 6= π/2 and, in case there should be an n with
bn = N , then also β 6= ϕn, where ϕn is the angle corresponding to the interval
(an, bn).
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To get a first intuitive understanding of the notion of singular points, consider
(6.1) on an interval (a, b) ⊂ S. After multiplying from the left by J−1 = −J , the
equation reads

u′(x) = −zh(x)JPϕu(x).

Since the matrices on the right-hand side commute with one another for different
values of x, the solution is given by

u(x) = exp
(
−z
∫ x

a

h(t) dt JPϕ

)
u(a).

However, PϕJPϕ = 0, as we see either from a direct computation or alternatively
from the fact that this matrix is singular, anti-self-adjoint and has real entries.
Thus the series for the exponential terminates and

u(x) =
(

1− z
∫ x

a

h(t) dt JPϕ

)
u(a).

In particular, letting u+ = u(b), u− = u(a), H =
∫ b
a
H(x) dx, we obtain J(u+ −

u−) = zHu−, so on a singular interval, (6.1) actually is its difference equation
analog in disguise.

Lemma 10.4. Suppose y ∈ R̃(0,N), and let f ∈ AC(1)[0, N ] be such that H(x)f(x) =
0 almost everywhere, f2(0) = 0, f1(N) cosβ + f2(N) sinβ = 0, and Jf ′ = Hy (the
existence of such an f follows from the definition of R̃(0,N)). Then, if x0 ∈ (0, N)
is regular, then f(x0) = 0. Similarly, if β is a regular boundary condition, then
f(N) = 0.

Proof. Fix y, f , x0 as above, and write f(x) = R(x)
( sinϕ(x)
− cosϕ(x)

)
. Since Hf = 0

almost everywhere, either R(x0) = 0 or else H(x) must have the form H(x) =
h(x)Pϕ(x) in a neighborhood of x0. (Note that this does not say that x0 is singular
because ϕ may depend on x.) In the first case, we are done. If R(x0) 6= 0, we can
solve for R, ϕ in terms of f1, f2 in a neighborhood of x0, and we find that these
functions are absolutely continuous, too. Hence the condition that Jf ′ = Hy gives

R′(x)
(

cosϕ(x)
sinϕ(x)

)
+R(x)ϕ′(x)

(
− sinϕ(x)
cosϕ(x)

)
= h(x)Pϕ(x)y(x) ≡ α(x)

(
cosϕ(x)
sinϕ(x)

)
.

We now take the scalar product with
(− sinϕ(x)

cosϕ(x)

)
and find that R(x)ϕ′(x) = 0.

Hence R(x0) 6= 0 implies that ϕ′ ≡ 0 on a neighborhood of x0, that is, x0 is
singular. This contradiction shows that f(x0) = 0.

This argument also works at x0 = N , provided that (N − ε,N) 6⊂ S for all ε > 0.
On the other hand, if (N − ε,N) ⊂ (an, bn) ⊂ S for some ε > 0, then near N ,
the function f must have the form f(x) = R(x)

(
sinϕn
− cosϕn

)
. But now the boundary

condition at N implies that R(N) = 0 or

sinϕn cosβ − cosϕn sinβ = sin(ϕn − β) = 0.

This latter relation, however, cannot hold if β is regular.

Here is an immediate consequence of the second part of Lemma 10.4.

Corollary 10.5. If β is regular, then R̃(0,N) = R(0,N).

We can now prove the promised analog of Theorem 3.1.
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Theorem 10.6. For regular boundary conditions β, the Hilbert spaces L2(R, dρβN )
and B(EN ) (see Proposition 6.1) are identical. More precisely, if F (z) ∈ B(EN ),
then the restriction of F to R belongs to L2(R, dρβN ), and F 7→ F

∣∣
R

is a unitary
map from B(EN ) onto L2(R, dρβN ).

Proof. Basically, we repeat the proof of Theorem 3.1. As β and N are fixed through-
out, we will again usually drop the reference to these parameters. Let {λn} be the
eigenvalues of (6.1), (10.1). We claim again that Jz ∈ L2(R, dρ) for every z ∈ C
and verify this by the following calculation:

‖Jz‖2L2(R,dρ) =
∑
n

|Jz(λn)|2 ρ({λn})

=
∑
n

∣∣∣〈u(·, z), u(·, λn)〉LH2 (0,N)

∣∣∣2 ‖u(·, λn)‖−2
LH2 (0,N)

≤ ‖u(·, z)‖2LH2 (0,N) .

The estimate follows with the help of Bessel’s inequality. Similar reasoning shows
that

〈Jw, Jz〉L2(R,dρ) = 〈u(·, z), Qu(·, w)〉LH2 (0,N),

where Q is the projection onto L({u(·, λn)}). By Theorem 10.3 and Corollary 10.5,
L({u(·, λn)}) = R⊥(0,N).

We now want to show that u(·, z) ∈ R⊥(0,N) for all z ∈ C. To this end, fix
y ∈ R(0,N), and pick f ∈ AC(1)[0, N ] with Hf = 0 almost everywhere, f2(0) =
f(N) = 0, and Jf ′ = Hy. An integration by parts shows that

〈u(·, z), y〉LH2 (0,N) =
∫ N

0

u∗(x, z)H(x)y(x) dx =
∫ N

0

u∗(x, z)Jf ′(x) dx

= u∗(x, z)Jf(x)
∣∣x=N

x=0
−
∫ N

0

u′
∗(x, z)Jf(x) dx

=
∫ N

0

(Ju′(x, z))∗ f(x) dx = z

∫ N

0

u∗(x, z)H(x)f(x) dx = 0,

as desired. Thus Qu(·, w) = u(·, w) and

〈Jw, Jz〉L2(R,dρ) = 〈u(·, z), u(·, w)〉LH2 (0,N) = Jz(w) = [Jw, Jz]B(EN ).

This discussion of Qu and the use of Bessel’s inequality (instead of Parseval’s iden-
tity) were the only modifications that are necessary; the rest of the argument now
proceeds literally as in the proof of Theorem 3.1.

The observations that were made after the proof of Theorem 3.1 also have direct
analogs. By combining Theorem 10.6 with the remarks following Theorem 10.3, we
get an induced unitary map, which we still denote by U . It is given by

U : LH2 (0, N)	R(0,N) → B(EN )(10.4a)

(Uf)(z) =
∫
u∗(x, z)H(x)f(x) dx.(10.4b)
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The proof goes as in Sect. 3. One first checks that (10.4b) is correct for f = u(·, λn).
This follows from the following calculation:

(Uu(·, λn)) (z) =
∫ N

0

u∗(x, z)H(x)u(x, λn) dx

=
∫ N

0

u∗(x, z)H(x)u(x, λn) dx

=
∫ N

0

(u∗(x, z)H(x)u(x, λn))∗ dx

=
∫ N

0

u∗(x, λn)H(x)u(x, z) dx = Jλn(z).

Then one extends to the whole space. In this context, recall also that u(·, λn) ∈
R⊥(0,N), as we saw in the proof of Theorem 10.3.

It is remarkable that the technical complications we have had to deal with in this
section are, so to speak, automatically handled correctly by the U from (10.4a),
(10.4b). Namely, first of all, the boundary condition β does not appear in (10.4a),
(10.4b). Recall that above we needed a regular β, but once Theorem 10.6 has been
proved, we can get a statement that does not involve β by passing from L2(R, dρβN )
to the de Branges space B(EN ).

Next, (10.4b) also makes sense for general f ∈ LH2 (0, N), not necessarily orthog-
onal to R(0,N). If interpreted in this way, U is partial isometry from LH2 (0, N) to
B(EN ) with initial space LH2 (0, N) 	 R(0,N) and final space B(EN ). This follows
again from the fact that u(·, z) ∈ R⊥(0,N) for all z ∈ C.

We can immediately make good use of these observation to prove the following
important fact.

Theorem 10.7. The de Branges spaces B(EN ) coming from the canonical system
(6.1) (compare Proposition 6.1) are regular.

Proof. Again, we prove this by verifying (7.1) for z0 = 0. As a direct consequence
of the discussion above, we have that

B(EN ) =

{
F (z) =

∫ N

0

u∗(x, z)H(x)f(x) dx : f ∈ LH2 (0, N)

}
.(10.5)

Thus integration by parts yields

F (z)− F (0)
z

=
∫ N

0

u∗(x, z)− (1, 0)
z

H(x)f(x) dx

= −u
∗(x, z)− (1, 0)

z

∫ N

x

H(t)f(t) dt

∣∣∣∣∣
x=N

x=0

+
1
z

∫ N

0

dxu′
∗(x, z)

∫ N

x

dtH(t)f(t)

=
∫ N

0

dxu∗(x, z)H(x)J
∫ N

x

dtH(t)f(t) ≡
∫ N

0

u∗(x, z)H(x)g(x) dx,

with g(x) = J
∫ N
x
H(t)f(t) dt. This g is bounded, hence in LH2 (0, N), so the proof

is complete.

Note that the relation (10.5) also makes it clear why it is reasonable to interpret
Theorem 7.3 as a Paley-Wiener Theorem.
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We are now heading towards the analog of Theorem 3.2a). For 0 < N1 < N2,
we define

R(N1,N2) = {y ∈ LH2 (N1, N2) : ∃f ∈ AC(1)[N1, N2], f(N1) = f(N2) = 0,

H(x)f(x) = 0 for a.e. x ∈ (N1, N2), Jf ′ = Hy}.

The desired result (see Corollary 10.9 below) will be a consequence of the following
observation.

Lemma 10.8. Let 0 < N1 < N2, and suppose that N1 is regular. Then

R(0,N2) = R(0,N1) ⊕R(N1,N2),

LH2 (0, N2)	R(0,N2) =
(
LH2 (0, N1)	R(0,N1)

)
⊕
(
LH2 (N1, N2)	R(N1,N2)

)
.

Proof. The second equation of course follows from the first one. If y ∈ R(0,N2) and
f ∈ AC(1)[0, N2] is as in the definition of R(0,N2), then Lemma 10.4 implies that
f(N1) = 0. This shows that χ(0,N1)y ∈ R(0,N1) and χ(N1,N2)y ∈ R(N1,N2) because
as the required f ’s we can just take the corresponding restrictions of the original
f .

Conversely, if y = y(1) + y(2) with y(1) ∈ R(0,N1), y(2) ∈ R(N1,N2), then the
f (i)’s from the definition satisfy f (1)(N1) = f (2)(N1) = 0. Hence f := f (1) + f (2)

is an absolutely continuous function with the properties needed to deduce that
y ∈ R(0,N2).

Corollary 10.9. Let 0 < N1 < N2, and suppose that N1 is regular. Then B(EN1)
is isometrically contained in B(EN2).

Proof. Lemma 10.8 says that

LH2 (0, N1)	R(0,N1) ⊂ LH2 (0, N2)	R(0,N2),

the inclusion being isometric. The unitary operator U from (10.4b) maps these
spaces onto B(EN1) and B(EN2), respectively.

We conclude this section with a closer study of the effect of singular points. As
above, we first look at the LH2 spaces and then transfer the results to the scale of
de Branges spaces B(EN ) by applying U from (10.4b).

Lemma 10.10. Let 0 < N1 < N2, and suppose that N1 is regular and (N1, N2) ⊂
S. Then

dim
(
LH2 (N1, N2)	R(N1,N2)

)
= 1,

LH2 (0, N2)	R(0,N2) =
(
LH2 (0, N1)	R(0,N1)

)
⊕ V,

where V is a one-dimensional space.

Proof. On (N1, N2), we have that H(x) = h(x)Pϕ. So, for an arbitrary y ∈
LH2 (N1, N2), the function H(x)y(x) has the form H(x)y(x) = h(x)w(x)eϕ, where∫ N2

N1
|w|2h <∞. Here, as introduced above, eϕ =

( cosϕ
sinϕ

)
. Now if f ∈ AC(1)[N1, N2]

obeys Jf ′ = Hy and f(N1) = 0, then

f(x) = −Jeϕ
∫ x

N1

w(t)h(t) dt.(10.6)
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Thus, the additional condition f(N2) = 0 forces∫ N2

N1

w(t)h(t) dt = 0.(10.7)

Conversely, if (10.7) holds, we can define f ∈ AC(1)[N1, N2] by (10.6), and this f
satisfies f(N1) = f(N2) = 0 and Jf ′ = Hy. Moreover, since e∗ϕJeϕ = 0, it follows
that Hf = 0 on (N1, N2).

But the integral from (10.7) is the scalar product in LH2 (N1, N2) of y with the
constant function eϕ, so we have proved that

R(N1,N2) =
{
y ∈ LH2 (N1, N2) : 〈eϕ, y〉LH2 (N1,N2) = 0

}
= {eϕ}⊥.

As eϕ is not the zero element of LH2 (N1, N2), this is the first assertion. The second
claim follows from the first one with the help of Lemma 10.8. (Incidentally, the
condition that N1 be regular is needed only for this implication.)

Corollary 10.11. If N1 > 0 is regular, but (N1, N2) ⊂ S, then B(EN2) = B(EN1)⊕
V , where V is a one-dimensional space.

Similarly, if (0, N) ⊂ S, then either B(EN ) = {0} or B(EN ) ∼= C. In the first
case, EN (z) ≡ 1.

Sketch of proof. The first part follows in the usual way from Lemma 10.10 by apply-
ing U from (10.4b). The second part is established by a similar discussion; we leave
the details to the reader. Let us just point out the fact that the case B(EN ) = {0}
occurs if H(x) = h(x)

(
0 0
0 1

)
on (0, N). Here, the boundary condition at zero is not

regular, so to speak, and we have that R(0,N) = R̃(0,N) = LH2 (0, N).

11. Matching de Branges spaces

We resume the proof of Theorem 5.1. Recall briefly what we have done already:
We have constructed two families of de Branges spaces, Hx and Bx, 0 < x ≤ N .
The spaces Hx are given by (9.1) and (9.2). The spaces Bx come from a canonical
system,

Ju′(x) = zH(x)u(x).(11.1)

This system is trace normed, that is, tr H(x) = τ > 0 for all x ∈ (0, N). It will be
convenient to define H0 = B0 = {0}. The canonical system (11.1) was constructed
such that BN = HN ; in fact, the corresponding de Branges functions are equal.
We also know that Ht is isometrically contained in Hx if t ≤ x, and for the family
Bx, we have Corollary 10.9. In particular, if x ∈ [0, N ] is arbitrary and if t ∈ [0, N ]
is a regular value of (11.1), then Hx and Bt are both isometrically contained in
HN = BN . Here, the points t = 0 and t = N are regular by definition; the claim on
Bt is obvious for these t’s. (In a different context, it would of course make perfect
sense to call t = 0 singular if there is an interval (0, s) ⊂ S.) Denote this (extended)
set of regular values by R, that is, R = [0, N ] \ S.

By Lemma 9.1 and Theorem 10.7, all spaces are regular, so Theorem 7.4 applies:
either Hx ⊂ Bt or Bt ⊂ Hx, the inclusion being isometric in each case. Define, for
t ∈ R, a function x(t) by

x(t) = inf{x ∈ [0, N ] : Hx ⊃ Bt}.
It is clear that x(t) is increasing, x(0) = 0, and, since Hx is a proper subspace of
HN = BN for x < N , x(N) = N . Our next goal is to prove that Hx(t) = Bt.
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A modification of (11.1) will be useful to avoid certain trivialities. Namely, if
(0, N) starts with a singular interval (0, b) ⊂ S and if Eb(z) ≡ 1, we simply delete
this initial interval (0, b) (and rescale so that we end up with a problem on (0, N)
again). Of course, this does not change the de Branges space BN . We have just
removed an interval on which nothing happens.

Next, we show that the spaces Hx depend continuously on x in the following
sense.

Lemma 11.1. For every x ∈ (0, N), we have that

Hx =
⋃
t<x

Ht =
⋂
t>x

Ht.

In the second expression, the closure is taken in HN ; recall that this space
contains Hx as a subspace for every x.

Proof. We begin with the first equality. We know already that Ht is isometrically
contained in Hx for t < x, and this implies that the closure of the union is contained
in Hx. Conversely, let F ∈ Hx, so F (z) =

∫
f(s) cos

√
zs ds for some f ∈ L2(0, x).

Let Fn(z) =
∫ x−1/n

0
f(s) cos

√
zs ds. Then Fn ∈ Hx−1/n and Fn → F in Hx because

‖F − Fn‖Hx ≤ C‖f − χ(0,x−1/n)f‖L2(0,x) → 0.

Thus F ∈
⋃
t<xHt.

As for the second assertion, the ordering of the spaces Ht here implies that
Hx ⊂

⋂
t>xHt. On the other hand, if F ∈

⋂
t>xHt, then for all large n, we

have that F (z) =
∫
fn(s) cos

√
zs ds for some fn ∈ L2(0, x + 1/n). But by the

uniqueness of the Fourier transform, there can be at most one function f ∈ L2(R)
so that F (z) =

∫
f(s) cos

√
zs ds, hence f = fn for all n. This f is supported by

(0, x+ 1/n) for all n, hence f ∈ L2(0, x) and F ∈ Hx.

Proposition 11.2. The (modified) system (11.1) has no singular points, and Bt =
Hx(t) for all t ∈ [0, N ].

Proof. We first prove that the desired relation Bt = Hx(t) holds for all t ∈ R, the set
of regular values. For these t, we know that for all x, either Hx ⊂ Bt or Bt ⊂ Hx.
Now the definition of x(t) implies that the first case occurs for x < x(t) and the
second inclusion holds for x > x(t). Hence⋃

x<x(t)

Hx ⊂ Bt ⊂
⋂

x>x(t)

Hx,

and now Lemma 11.1 shows that Bt = Hx(t). This argument does not literally
apply to the extreme values t = 0, t = N , but the claim is obvious in these cases.

If (a, b) is a component of S, then the preceding may be applied to the regular
values a, b, and thus

Hx(b) 	Hx(a) = Bb 	Ba.

Corollary 10.11 shows that this latter difference is one-dimensional. (For a = 0,
this statement holds because of our modification of (11.1).) On the other hand,
Hx(b) 	 Hx(a) is isomorphic to L2(x(a), x(b)) and hence either the zero space or
infinite dimensional. We have reached a contradiction which can only be avoided if
S = ∅.
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It is, of course, much more convenient to have Bt = Ht; this can be achieved
by transforming (11.1). More specifically, we will use x(t) as the independent
variable. We defer the discussion of the technical details to Sect. 15 because we
need additional tools which will be developed next.

12. The conjugate function

In regular de Branges spaces, one can introduce a so-called conjugate mapping,
which is a substitute for the Hilbert transform of ordinary Fourier analysis. In this
paper, the conjugate mapping will not play a major role. Thus, our treatment of
this topic will be very cursory and incomplete; for the full picture, please consult
[9].

Consider a canonical system and the associated de Branges spaces BN ≡ B(EN );
for simplicity, we assume that there are no singular points (as in Proposition 11.2).
Recall that v is the solution of (11.1) with v(0, z) =

(
0
1

)
, and define

Kz(ζ) =
v∗(N, z)Ju(N, ζ)− 1

ζ − z
.(12.1)

Since (v∗(x, z)Ju(x, ζ))′ = (ζ − z)v∗(x, z)H(x)u(x, ζ), this may also be written in
the form

Kz(ζ) =
∫ N

0

v∗(x, z)H(x)u(x, ζ) dx =
∫ N

0

u∗(x, ζ)H(x)v(x, z) dx.(12.2)

In particular, when combined with (10.5), the last expression shows that Kz ∈
BN for all z ∈ C. We can thus define, for F ∈ BN , the conjugate function F̃

by F̃ (z) = [Kz, F ]. The material of Sect. 10 immediately provides us with an
interpretation of F̃ . Namely, if F (z) =

∫
u∗(x, z)H(x)f(x) dx with f ∈ LH2 (0, N),

then F̃ (z) =
∫
v∗(x, z)H(x)f(x) dx, that is, instead of u, one uses the solution v

satisfying the “conjugate” boundary condition at x = 0.
The next lemma says that F̃ does not depend on the space in which the conjugate

function is computed. Notice that since we are assuming that all points are regular,
BN1 is isometrically contained in BN2 for N1 < N2 by Corollary 10.9.

Lemma 12.1. Let 0 < N1 < N2 and F ∈ BN1 . Then

F̃ (z) = [K(N1)
z , F ]BN1

= [K(N2)
z , F ]BN2

.

Proof. By (12.2), K(Ni)
z = U(χ(0,Ni)v(·, z)), where U is the map from (10.4b). Since

there are no singular points, U is unitary from LH2 (0, Ni) onto BNi . Also, F = Uf
for some f ∈ LH2 (0, N1), hence

[K(N1)
z , F ]BN1

= [U(χ(0,N1)v(·, z)), Uf ]BN1
= 〈v(·, z), f〉LH2 (0,N1)

= 〈χ(0,N2)v(·, z), f〉LH2 (0,N2) = [U(χ(0,N2)v(·, z)), Uf ]BN2

= [K(N2)
z , F ]BN2

.

For F ∈ BN , we introduce the abbreviation

(RF )(z) =
F (z)− F (0)

z
.
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Recall from Theorem 10.7 that RF ∈ BN whenever F ∈ BN . The following
identity, which is a special case of a more general identity (compare [9, Theorem
27]), is basically about all we will need about the conjugate function.

Proposition 12.2. For all F,G ∈ BN , the following identity holds:

F̃ (0)G(0)− F (0)G̃(0) = [RG,F ]− [G,RF ].

Proof. By a standard density argument, it suffices to prove this for F = Jλm ,
G = Jλn , where the {λk} are the eigenvalues of (11.1), (10.1). In that case,

F̃ (0) = [K0, Jλm ] = K0(λm) = K0(λm) =
u1(N,λm)− 1

λm

and G̃(0) = (u1(N,λn) − 1)/λn. Also, F (0) = −u2(N,λm)/λm and G(0) =
−u2(N,λn)/λn. So the left-hand side of the equation that we want to prove equals

1
λmλn

[−(u1(N,λm)− 1)u2(N,λn) + u2(N,λm)(u1(N,λn)− 1)] .

Because u(·, λm) and u(·, λn) both satisfy the boundary condition at x = N , we
have that

u1(N,λm)u2(N,λn) = u1(N,λn)u2(N,λm),

and thus the above expression simplifies to

u2(N,λn)− u2(N,λm)
λmλn

.(12.3)

On the other hand,

[RG,F ] = (RG)(λm) = (RG)(λm) =
Jλn(λm)−G(0)

λm
,

and similarly for [G,RF ]. Since Jλn(λm) = δmnJλn(λn), a brief calculation now
shows that the right-hand side of the asserted equation also equals (12.3).

13. The integral equations

In this section, we study the reproducing kernels J (x)
z and the conjugate kernels

K
(x)
z of the spaces Hx. More specifically, we find integral equations from which

further properties of these quantities will be derived later. Actually, it suffices to
consider the case when z = 0.

Things are very easy for J (x)
0 . Introduce y(x, t) by writing

J
(x)
0 (z) =

∫ x

0

y(x, t) cos
√
zt dt.

So for fixed x, the function y(x, ·) lies in L2(0, x). Now we use the defining property
of J (x)

0 : [J (x)
0 , F ]Hx = F (0) for all F ∈ Hx. Write F (z) =

∫
f(t) cos

√
zt dt, where

f ∈ L2(0, x), and recall that by (9.2),

[J (x)
0 , F ]Hx = 〈y(x, ·), (1 +Kφ)f〉L2(0,x).

We obtain the equation

〈y(x, ·), (1 +Kφ)f〉L2(0,x) = F (0) = 〈1, f〉L2(0,x),
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where 1 on the right-hand side denotes the function that is identically equal to 1
on (0, x). The operator 1 + Kφ is self-adjoint and f ∈ L2(0, x) is arbitrary, so we
conclude that

y(x, t) +
∫ x

0

K(t, s)y(x, s) ds = 1,(13.1)

and this is the desired integral equation for y(x, t), which, in turn, determines
J

(x)
0 (z). By the way we derived (13.1), this equation is to be interpreted as an

equation in L2(0, x), where x ∈ (0, N ] is arbitrary, but fixed. However, we can then
again define a particular representative y(x, t) by requiring (13.1) to hold pointwise.
(Recall that the same procedure was applied in connection with (10.2).) From the
definition of y we know only that y(x, ·) ∈ L2(0, x), but then (13.1) in this pointwise
sense of course implies much more regularity. This will be discussed in detail in the
next section.

As for K(x)
0 , we would like to proceed similarly, but we must first identify a

conjugate mapping F 7→ F̃ (0) on Hx. We do this by exploiting the fact that the
identity of Proposition 12.2 already determines F̃ (0) up to a multiple of F (0).

Let

ψ(t) =
∫ t

0

φ(s)(t− s) ds+ t.

Then ψ ∈ AC(3)[0, N ], ψ′′ = φ, and ψ(0) = 0, ψ′(0) = 1. For F ∈ HN , so
F (z) =

∫ N
0
f(t) cos

√
zt dt with f ∈ L2(0, N), we define

F̂ (0) =
∫ N

0

f(t)ψ(t) dt.(13.2)

Proposition 13.1. For all F,G ∈ HN , the following identity holds:

F̂ (0)G(0)− F (0)Ĝ(0) = [RG,F ]− [G,RF ].

Proof. As usual, let f, g be the L2(0, N) functions associated with F and G, re-
spectively. Plugging in the definitions, we see that the left-hand side of the identity
that is to be proved equals∫ N

0

∫ N

0

dx dt g(t)f(x)
(
x− t+

∫ x

0

φ(s)(x− s) ds−
∫ t

0

φ(s)(t− s) ds
)
.

We have seen in the last part of the proof of Lemma 9.1 that

(RF )(z) ≡ F (z)− F (0)
z

=
∫ N

0

dt cos
√
zt

∫ N

t

ds f(s)(t− s).

Thus, again by a routine calculation, the right-hand side of the above identity is
equal to∫ N

0

∫ N

0

dx dt g(t)f(x)
(
x− t+

1
2

∫ t

0

(φ(s− x) + φ(s+ x)) (s− t) ds

− 1
2

∫ x

0

(φ(s− t) + φ(s+ t)) (s− x) ds
)
.
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So the identity holds for arbitrary F,G ∈ HN precisely if

(13.3)
∫ x

0

[φ(t− s) + φ(t+ s)− 2φ(s)] (s− x) ds =∫ t

0

[φ(x− s) + φ(x+ s)− 2φ(s)] (s− t) ds

for all t, x ∈ [0, N ]. In other words, we need to show that the function

H(x, t) =
∫ x

0

[φ(t− s) + φ(t+ s)− 2φ(s)] (s− x) ds

is symmetric: H(x, t) = H(t, x).
We first prove this under the additional assumption that φ is smooth (let us say,

φ ∈ C2). Then H has continuous partial derivatives up to order 2. We have

H(0, t) = Hx(0, t) = 0, Hxx(x, t) = 2φ(x)− φ(t− x)− φ(t+ x),

and, because φ is even, H(x, 0) = 0. Moreover,

Ht(x, 0) =
∫ x

0

[φ′(−s) + φ′(s)] (s− x) ds

is also equal to zero because the expression in brackets is zero. Finally,

Htt(x, t) =
∫ x

0

[φ′′(t− s) + φ′′(t+ s)] (s− x) ds,

and by integrating by parts, we may evaluate this as

Htt(x, t) = 2φ(t)− φ(t− x)− φ(t+ x).

Fix t ∈ [0, N ] and consider the difference D(x) = H(x, t) − H(t, x). What we
have shown in the preceding paragraph says that D(0) = D′(0) = 0, D′′(x) ≡ 0.
Hence D ≡ 0, as desired.

To prove (13.3) in full generality, approximate the given φ uniformly on [−2N, 2N ]
by even functions φn ∈ C2. (For example, approximate the odd function φ′ ∈
L1(−2N, 2N) in L1 norm by odd functions fn ∈ C∞0 (−2N, 2N) and let φn(x) =∫ x

0
fn(t) dt.) Then (13.3) holds for φn, and we can pass to the limit to obtain (13.3)

for φ as well.

We are now ready to introduce K(x)
0 , the conjugate kernel (for z = 0) of Hx.

The map F 7→ F̂ (0) is a bounded linear functional on Hx. Hence there exists a
unique K(x)

0 ∈ Hx, so that [K(x)
0 , F ]Hx = F̂ (0) for all F ∈ Hx. The use of the

symbol K(x)
0 for this function will be justified in Sect. 15. More precisely, we will

show that, possibly after a modification of the canonical system from Proposition
11.2, K(x)

0 indeed also is the conjugate kernel of Bx, which was introduced in Sect.
12.

Theorem 13.2. Let J (x)
0 and K

(x)
0 be the reproducing and conjugate kernels, re-

spectively, of Hx. Define y(x, ·), w(x, ·) ∈ L2(0, x) by

J
(x)
0 (z) =

∫ x

0

y(x, t) cos
√
zt dt,

K
(x)
0 (z) =

∫ x

0

w(x, t) cos
√
zt dt.
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Then y, w obey the integral equations

y(x, t) +
∫ x

0

K(t, s)y(x, s) ds = 1,

w(x, t) +
∫ x

0

K(t, s)w(x, s) ds = ψ(t).

Proof. The assertions concerning J
(x)
0 and y have been established at the begin-

ning of this section (compare (13.1)). The argument for K(x)
0 and w is completely

analogous. By definition of K(x)
0 , (13.2), and the fact that ψ is real,

[K(x)
0 , F ]Hx = F̂ (0) = 〈ψ, f〉L2(0,x).

On the other hand,

[K(x)
0 , F ]Hx = 〈w(x, ·), (1 +Kφ)f〉L2(0,x) = 〈(1 +Kφ)w(x, ·), f〉L2(0,x),

and as f ∈ L2(0, x) is arbitrary, the integral equation follows.

14. Regularity properties

In this section, we investigate the regularity of the solutions p(x, t) of integral
equations of the form

p(x, t) +
∫ x

0

K(t, s)p(x, s) ds = g(t).(14.1)

Here, K still is the kernel from (4.1). For g(t) = 1 and g(t) = ψ(t), (14.1) reduces
to the equations from Theorem 13.2. Since K(t, s) = (φ(s − t) + φ(s + t))/2 and
φ ∈ AC(1), we expect that the solutions p have similar regularity, at least if g is
sufficiently smooth. In fact, more is true: p has better regularity properties than
K!

The material of this section is of a technical character. It is possible to omit the
proof of the following theorem on a first reading.

To simplify the notation, we introduce the set

∆N = {(x, t) ∈ R2 : 0 ≤ t ≤ x ≤ N}.
By continuity in ∆N , we will always mean that the function under consideration
is jointly continuous in (x, t) ∈ ∆N . Note that it is also possible to consider (14.1)
for x = 0; we then simply have that p(0, 0) = g(0).

Theorem 14.1. Suppose that φ ∈ ΦN and g ∈ AC(2)[0, N ]. Then, for every
x ∈ [0, N ], the integral equation (14.1) has a unique solution p(x, ·) in L2(0, x)
which has the following regularity properties:
a) p ∈ C1(∆N ), that is, the first order partial derivatives exist and are continuous
in ∆N .
b) p(x, x) ∈ AC(2)[0, N ].

For reasons of brevity, our formulation in part a) is a little sloppy. The easiest
way to get a precise statement is to interpret a) as follows: The first order partial
derivatives exist on the interior of ∆N , and they have continuous extensions to
∆N . By a limiting argument, this implies that the one-sided partial derivatives
exist where they can be reasonably defined.

The second order partial derivatives exist in a certain weak sense. Unfortunately,
things get messy (for example, the statements are not symmetric in x and t), and
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it is better to avoid these issues as much as possible by using an approximation
argument as in the proof of Proposition 13.1. Therefore, we have not made these
statements explicit. We do need, however, the statement on the existence of the
second derivative of the “diagonal” function p(x, x).

Proof. The integral equation (14.1) is of the form

(1 +K(x)
φ )p(x, ·) = g,

where we write K(x)
φ for the integral operator in L2(0, x) that is generated by the

kernel K. Since 1 +K(x)
φ > 0 by assumption, (14.1) has the unique solution

p(x, ·) = (1 +K(x)
φ )−1g.(14.2)

Note that the roles of the variables x and t are quite different: t is the independent
variable, while x is an external parameter.

We now observe the important fact that (14.2) makes sense not only on L2(0, x),
but on each space of the following chain of Banach spaces:

C[0, x] ⊂ L2(0, x) ⊂ L1(0, x).

Indeed, first of all, K(x)
φ is a well defined operator on each of these three spaces; in

fact, K(x)
φ maps L1(0, x) into C[0, x]. Moreover, K(x)

φ is compact in every case. This
follows from the Arzela-Ascoli Theorem: If fn ∈ L1(0, x), ‖fn‖1 ≤ 1, then, since
the kernel K is uniformly continuous on [0, x] × [0, x], the sequence of functions
K(x)
φ fn is equicontinuous and uniformly bounded, hence there exists a uniformly

convergent subsequence. So K(x)
φ is compact even as an operator from L1(0, x) to

C[0, x].
The inclusion K(x)

φ (L1(0, x)) ⊂ C[0, x] also shows that the spectrum of K(x)
φ is

independent of the space: the eigenfunctions with non-zero eigenvalues are always
contained in the smallest space C[0, x]. In particular, we always have that −1 /∈
σ(K(x)

φ ), so 1 +K(x)
φ is boundedly invertible and (14.2) holds.

To investigate the derivatives of p, we again temporarily make the additional
assumption that φ and g (and hence also K) are smooth. So, let us suppose that
φ, g ∈ C∞. Then one can show that the solution p is also smooth: p ∈ C∞(∆N ).
We leave this part of the proof to the reader. To investigate the smoothness in x,
it is useful to transform (14.1) to get an equivalent family of equations on a space
that does not depend on x. See also [21, Sect. 2.3] for a discussion of these issues.

Once we know that p is smooth, we can get integral equations for the derivates
by differentiating (14.1). Since, for the time being, all functions are C∞, we may
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differentiate under the integral sign. Thus we obtain

pt(x, t) = −
∫ x

0

Kt(t, s)p(x, s) ds+ g′(t),(14.3a)

px(x, t) +
∫ x

0

K(t, s)px(x, s) ds = −K(t, x)p(x, x),(14.3b)

pxx(x, t) +
∫ x

0

K(t, s)pxx(x, s) ds = −Kx(t, x)p(x, x)

−K(t, x) (2px(x, s) + ps(x, s))
∣∣
s=x

,

(14.3c)

pxt(x, t) = −Kt(t, x)p(x, x)−
∫ x

0

Kt(t, s)px(x, s) ds.(14.3d)

For general φ and g, we approximate φ′ in L1(−2N, 2N) by odd functions φ′n ∈
C∞0 (−2N, 2N), and we put φn(x) =

∫ x
0
φ′n(t)dt. Then φn → φ in C[−2N, 2N ] and

K(n) → K in C(∆N ) (we use superscripts here because in a moment we will want to
denote partial derivatives by subscripts). Similary, we pick L1(0, N) approximations
g′′n ∈ C∞0 (0, N) of g′′ ∈ L1(0, N) and put

gn(x) = g(0) + xg′(0) +
∫ x

0

g′′n(t)(x− t) dt.

The integral operators K(x)
φn

converge to K(x)
φ in the operator norm of any of the

spaces we have considered above. In particular, 1 + K(x)
φn

is boundedly invert-

ible for all sufficiently large n. In fact, K(x)
φn

converges to K(x)
φ in the norm of

B(L1(0, x), C[0, x]). Moreover, this convergence is uniform in x ∈ (0, N ].
Let p(n) be the solution of (14.1) with K and g replaced by K(n) and gn, respec-

tively. Then the above remarks together with (14.2) imply that

‖p(n)(x, ·)− p(x, ·)‖C[0,x] → 0,

uniformly in x ∈ [0, N ]. (Strictly speaking, one needs a separate argument for the
degenerate case x = 0, but things are very easy here because p(n)(0, 0) = gn(0) =
g(0) = p(0, 0).) In other words, p(n) converges to the solution p of the original
problem in C(∆N ). In particular, p ∈ C(∆N ). Similar arguments work for the first
order partial derivatives. Eq. (14.3b) says that

p(n)
x (x, ·) = −p(n)(x, x)(1 +K(x)

φn
)−1K(n)(·, x),

and the right-hand side converges in C[0, x], uniformly with respect to x. Again,
the case x = 0 needs to be discussed separately; we leave this to the reader. It
follows that the partial derivative px exists, is continuous and is equal to this limit
function. The argument for the existence and continuity of pt, which uses (14.3a),
is similar (perhaps easier, because one does not need to invert an operator). We
have proved part a) now.

Eq. (14.3c) (for K(n) instead of K) again has the form

(1 +K(x)
φn

)p(n)
xx (x, ·) = hn(x, ·);

we do not write out the inhomogeneous term hn here. Since hn converges in L1(0, x),
but not necessarily in C[0, x], we now only obtain convergence of p(n)

xx in L1(0, x).
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We denote the limit function by pxx, so pxx(x, ·) ∈ L1(0, x) and

‖p(n)
xx (x, ·)− pxx(x, ·)‖L1(0,x) → 0,

uniformly in x. Note, however, that pxx need not be a partial derivative in the
classical sense. Using similar arguments, we deduce from (14.3d) that p(n)

xt (x, ·)
converges in L1(0, x) to a limit function, which we denote by pxt(x, ·). As usual,
the convergence is uniform in x.

We have that

(14.4) p′(x, x) = (px + pt)
∣∣
t=x

= −p(x, x)K(x, x) + g′(x)

−
∫ x

0

K(x, s)px(x, s) ds−
∫ x

0

Kx(x, s)p(x, s) ds.

We now show that the individual terms on the right-hand side are in AC(1)[0, N ].
This is obvious for the first two terms, so we only need to discuss the integrals. If
we replace K and p in these integrals by K(n) and p(n), respectively, and then let
n tend to infinity, we have convergence to the original terms in C[0, N ]. We can
therefore prove absolute continuity of these terms by showing that the derivatives
converge in L1(0, N). So, consider

d

dx

∫ x

0

K(n)(x, s)p(n)
x (x, s) ds = K(n)(x, x)p(n)

x (x, x)

+
∫ x

0

K(n)
x (x, s)p(n)

x (x, s) ds+
∫ x

0

K(n)(x, s)p(n)
xx (x, s) ds.

It is easy to see that the first two terms on the right-hand side converge in C[0, N ].
As for the last term, we note that∫ x

0

K(n)(x, s)p(n)
xx (x, s) ds =

∫ x

0

K(x, s)p(n)
xx (x, s) ds

+
∫ x

0

(
K(n)(x, s)−K(x, s)

)
p(n)
xx (x, s) ds.

Now recall that K(x)
φn
−K(x)

φ → 0 in B(L1, C) (uniformly in x) and ‖p(n)
xx (x, ·)‖L1(0,x)

is bounded as a function of n and x. Therefore, the last term goes to zero in C[0, N ].
Similarly, the first term also converges in C[0, N ], as we see from the following
estimate:∣∣∣∣∫ x

0

K(x, s)
(
p(n)
xx (x, s)− pxx(x, s)

)
ds

∣∣∣∣ ≤ ‖K(x)
φ ‖B(L1,C)‖p(n)

xx (x, ·)− pxx(x, ·)‖L1 .

Finally, let us analyze the last term from (14.4). By definition of K (see (4.1)),

Kx(x, s) =
1
2

(φ′(x− s) + φ′(x+ s)) .

Let us look at the term with φ′(x− s); the other term is of course treated similarly.
An integration by parts gives∫ x

0

φ′(x− s)p(x, s) ds = φ(x)p(x, 0) +
∫ x

0

φ(x− s)ps(x, s) ds.

The first term on the right-hand side manifestly is absolutely continuous. To es-
tablish absolute continuity of the integral, we argue exactly as above. Namely, we
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approximate by smooth functions and compute the derivative:

d

dx

∫ x

0

φn(x− s)p(n)
s (x, s) ds =∫ x

0

φ′n(x− s)p(n)
s (x, s) ds+

∫ x

0

φn(x− s)p(n)
xs (x, s) ds.

Now arguments analogous to those used in the preceding paragraph show that this
derivative converges in C[0, N ], and, also as above, convergence in L1(0, N) already
would have been sufficient to deduce the required absolute continuity.

15. Some identities

First of all, we can now complete the work of Sect. 11.

Theorem 15.1. There exists H(x) ∈ L1(0, N), H(x) ≥ 0 for almost every x ∈
(0, N), H 6≡ 0 on nonempty open sets, so that for all x ∈ [0, N ], we have that
Bx = Hx (as de Branges spaces). Here, Bx is the de Branges space based on the
de Branges function Ex(z) = u1(x, z) + iu2(x, z), where

Ju′(t) = zH(t)u(t), u(0) =
(

1
0

)
,

as in Proposition 6.1, and Hx is the space from Lemma 9.1.
Moreover, H(x) can be chosen so that F̂ (0) = F̃ (0) for all F ∈ BN = HN .

The last part justifies our definition of K(x)
0 ∈ Hx from Sect. 13. Recall also

that F̂ (0) is computed in HN , while F̃ (0) is computed as in Sect. 12 by using the
realization BN of this space.

Proof. As explained in Sect. 11, we use the system from Proposition 11.2, but with
x(t) as the new independent variable.

As the first step of the proof, let us check how far we are from satisfying the last
part of Theorem 15.1. Propositions 12.2 and 13.1 show that

F̃ (0)G(0)− F (0)G̃(0) = F̂ (0)G(0)− F (0)Ĝ(0)

for all F,G ∈ BN = HN . In particular, if F (0) = 0, then F̃ (0) = F̂ (0). Since both
F 7→ F̃ (0) and F 7→ F̂ (0) are linear maps, it follows that there exists a constant
c ∈ C, independent of F , so that

F̂ (0) = F̃ (0) + cF (0).(15.1)

From the definitions, we see that F̃#(0) = F̃ (0) and F̂#(0) = F̂ (0), so the c from
(15.1) must actually be real.

To avoid confusion, let us temporarily denote the reproducing and conjugate
kernels (for z = 0) of the spaces Bt by j(t)

0 and k(t)
0 (lowercase letters!), respectively.

Note also that the conjugate and reproducing kernels depend only on the de Branges
space, but not on the particular de Branges function chosen. Therefore (15.1) says
that K(N)

0 (z) = k
(N)
0 (z) + cj

(N)
0 (z). Since Bt = Hx(t) and since by Lemma 12.1,

F̃ (0) does not depend on the space in which the conjugate function is computed,
we also have that j(t)

0 (z) = J
(x(t))
0 (z) and

K
(x(t))
0 (z) = k

(t)
0 (z) + cj

(t)
0 (z).(15.2)
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Next, we claim that the following analog of Lemma 11.1 holds:

Bt =
⋃
s<t

Bs =
⋂
s>t

Bs.(15.3)

We will only prove (and use) this for canonical systems without singular points,
where the proof is very easy. However, a similar but – due to the possible presence
of singular points – somewhat more complicated result holds for general canonical
systems. If S = ∅, then Lemma 10.4 implies that R(a,b) = {0} for arbitrary a < b.
Thus the U from (10.4a), (10.4b) maps LH2 (0, t) unitarily onto Bt for all t ∈ [0, N ].
In particular, the following obvious fact is equivalent to (15.3):

LH2 (0, t) =
⋃
s<t

LH2 (0, s) =
⋂
s>t

LH2 (0, s).

It also follows that x(t) is strictly increasing. Indeed, if x(t1) = x(t2), then Bt1 =
Bt2 , and these spaces are mapped by U−1 onto LH2 (0, t1) and LH2 (0, t2), respectively,
so t1 = t2.

The relation (15.3) allows us to show that x(t) is continuous. Proposition 11.2
together with (15.3) imply that

Bt =
⋂
s>t

Bs =
⋂
s>t

Hx(s).

On the other hand, Bt = Hx(t), and now Lemma 11.1 and the fact that Hy 	Hx is
not the zero space for y > x show that infs>t x(s) ≤ x(t). A similar argument gives
sups<t x(s) ≥ x(t). Since x(t) is monotonically increasing, these two properties
suffice to deduce that x(t) is continuous.

Let t(x) be the inverse function of x(t). Then t is also strictly increasing and
continuous. We want to show that t is actually absolutely continuous. To this end,
we compare j0(0) + k̃0(0) in the spaces Bt(x) = Hx. Specializing Proposition 6.1 to
z = ζ = 0 (and replacing N by t(x)), we see that

j
(t(x))
0 (0) =

∫ t(x)

0

H11(s) ds.

Moreover, arguing as in the proof of Lemma 12.1, we obtain

˜
k

(t(x))
0 (0) = [k(t(x))

0 , k
(t(x))
0 ]Bt(x) = 〈v(·, 0), v(·, 0)〉LH2 (0,t(x)) =

∫ t(x)

0

H22(s) ds.

Hence, still working in Bt(x), we have that

j
(t(x))
0 (0) + ˜

k
(t(x))
0 (0) =

∫ t(x)

0

tr H(s) ds = τt(x),(15.4)

where τ is a positive constant.
On the other hand, we may use (15.1), (15.2) to evaluate j0(0) + k̃0(0) in Hx.

We compute

˜
k

(t(x))
0 (0) = ˜

K
(x)
0 (0)− cJ̃ (x)

0 (0) = ̂
K

(x)
0 (0)− cK(x)

0 (0)− cĴ (x)
0 (0) + c2J

(x)
0 (0).

By definition of w and the transform F 7→ F̂ (0), we have ̂K(x)
0 (0) =

∫ x
0
w(x, t)ψ(t) dt,

and this is an absolutely continuous function of x ∈ [0, N ] by Theorem 14.1. Sim-
ilar arguments apply to the other terms and to j(t(x))

0 (0) = J
(x)
0 (0) =

∫ x
0
y(x, t) dt.

Comparing with (15.4), we thus conclude that t(x) ∈ AC(1)[0, N ], as desired.
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We are now ready to transform (11.1). Define ũ(x) = u(t(x)) and H̃(x) =
t′(x)H(t(x)). Since t′ ≥ 0 almost everywhere, this H̃ is in L1(0, N) and positive
semidefinite almost everywhere. As t(x) is strictly increasing, t′ cannot vanish
identically on a nonempty open set, and thus H̃ also has this property. Moreover,
ũ solves the corresponding canonical equation:

Jũ′(x) = Jt′(x)u′(t(x)) = zt′(x)H(t(x))u(t(x)) = zH̃(x)ũ(x).

By definition of ũ, the new de Branges spaces B̃x are related to the old spaces by
B̃x = Bt(x). Hence B̃x = Hx, as desired.

Finally, we can get rid of c in (15.1) by passing to the new matrix

Hc(x) =
(

1 0
c 1

)
H(x)

(
1 c
0 1

)
.

(To avoid clumsy notation, we write H(x) instead of H̃(x) for the H constructed
above.) Let u(c), v(c) be the solutions of the transformed system

Jy′(x) = zHc(x)y(x)(15.5)

with the initial values u(c)(0, z) =
(

1
0

)
, v(c)(0, z) =

(
0
1

)
. These functions are related

to the old solutions u = u(0) and v = v(0) by

u(c)(x, z) =
(

1 −c
0 1

)
u(x, z), v(c)(x, z) =

(
1 −c
0 1

)
(cu(x, z) + v(x, z)).

So, first of all, since the de Branges functions associated with (15.5) are given
by E

(c)
x (z) = u

(c)
1 (x, z) + iu

(c)
2 (x, z), it follows from Theorem 7.2 that (15.5) still

generates the same de Branges spaces: Bx ≡ B(E(0)
x ) = B(E(c)

x ). So the equality
Bx = Hx continues to hold if we replace H by Hc. Second, a calculation based on
(12.1) shows that the conjugate kernel K(c)

z of B(E(c)
N ) (I apologize for the slightly

inconsistent notation, but there are so many conjugate kernels in this argument) is
given by K

(c)
z (ζ) = Kz(ζ) + cJz(ζ), and thus for the new system (15.5), we have

that F̃ (0) = F̂ (0).

Proposition 15.2. Let H and y, w be as in Theorems 15.1 and 13.2, respectively.
Then

H11(x) = y(x, x) +
∫ x

0

yx(x, t) dt,

H12(x) = w(x, x) +
∫ x

0

wx(x, t) dt = y(x, x)ψ(x) +
∫ x

0

yx(x, t)ψ(t) dt

H22(x) = w(x, x)ψ(x) +
∫ x

0

wx(x, t)ψ(t) dt.

Proof. Basically, we have established this already in the preceding proof when we
showed that t(x) is absolutely continuous. The idea is to compare reproducing and
conjugate kernels in Bx = Hx.

By Proposition 6.1, the reproducing kernel J (x)
0 of Bx, evaluated at z = 0, is given

by J (x)
0 (0) =

∫ x
0
H11(t) dt. On the other hand, in Hx we have J (x)

0 (0) =
∫ x

0
y(x, t) dt,

so ∫ x

0

H11(t) dt =
∫ x

0

y(x, t) dt.
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Now take the derivatives with respect to x, using Theorem 14.1 on the right-hand
side. The formula for H11 follows.

Similarly, (12.2) shows that in Bx, we have K(x)
0 (0) =

∫ x
0
H12(t) dt, and now the

same reasoning applies and gives the first formula for H12. To prove the second
one, notice that the conjugate of J (x)

0 , evaluated in Hx, is given by

Ĵ
(x)
0 (0) =

∫ x

0

y(x, t)ψ(t) dt.

On the other hand, J̃ (x)
0 (0) = [K(x)

0 , J
(x)
0 ]Bx by Lemma 12.1. This scalar product

can be evaluated with the help of the U from (10.4b), becauseK(x)
0 = U(χ(0,x)v(·, 0))

by (12.2) and J
(x)
0 = U(χ(0,x)u(·, 0)) by Proposition 6.1 (and a simple manipula-

tion). Thus

J̃
(x)
0 (0) = 〈v(·, 0), u(·, 0)〉LH2 (0,x) =

∫ x

0

H21(t) dt =
∫ x

0

H12(t) dt,

and the second formula for H12 now follows.
Finally, the formula for H22 is proved by an analogous argument, using the

conjugate of K(x)
0 this time.

Our final goal is to verify that H(x) satisfies the hypotheses of Proposition 8.1.
Proposition 15.2 gives some hope that this can be done by analyzing the functions
y, w from Theorem 13.2.

Proposition 15.3. Let y, w be as in Theorem 13.2. Then y(0, 0) = 1, w(0, 0) = 0,
y′(0, 0) = 0, w′(0, 0) = 1, and

y(x, x)w′(x, x)− y′(x, x)w(x, x) = 1.

Proof. By the usual approximation argument, it suffices to prove this under the
additional assumption that φ ∈ C∞. Consider again the general version (14.1) of
the integral equations for y and w. By differentiating with respect to x, we see that
px satisfies (

1 +K(x)
φ

)
px(x, ·) = −p(x, x)K(·, x).(15.6)

Also, ptt solves

ptt(x, t) +
∫ x

0

Ktt(t, s)p(x, s) ds = g′′(t).(15.7)

Since Ktt(t, s) = Kss(t, s), we can use integration by parts to rewrite this equation.
In the following calculation, we will use the notation ∂i for the partial derivative
with respect to the ith variable (i = 1, 2).∫ x

0

Kss(t, s)p(x, s) ds = Kx(t, x)p(x, x)−∂2K(t, 0)p(x, 0)−
∫ x

0

Ks(t, s)ps(x, s) ds

= Kx(t, x)p(x, x)−K(t, x)∂2p(x, x) + φ(t)∂2p(x, 0) +
∫ x

0

K(t, s)pss(x, s) ds.

We have used the fact that because φ is even, ∂2K(t, 0) = 0. Also, K(t, 0) = φ(t).
Plug this into (15.7) and subtract the resulting equation from the equation (14.3c)
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for pxx. There are some cancellations, and the function P = pxx − ptt solves the
relatively simple equation(

1 +K(x)
φ

)
P (x, ·) = −2p′(x, x)K(·, x) + ∂2p(x, 0)φ− g′′.(15.8)

By putting t = 0 in the equation (14.3a) for pt and noting that ∂1K(0, s) = 0, we
see that ∂2p(x, 0) = g′(0). Now if g is one of the functions from the equations of
Theorem 13.2 (so g(t) = 1 or g(t) = ψ(t)), then g′(0)φ(t)− g′′(t) ≡ 0. Hence (15.8)
says that the functions Y = yxx − ytt and W = wxx − wtt solve(

1 +K(x)
φ

)
Y (x, ·) = −2y′(x, x)K(·, x),(

1 +K(x)
φ

)
W (x, ·) = −2w′(x, x)K(·, x).

Comparison with (15.6) for p = y and p = w shows that

Y (x, t)
2y′(x, x)

=
W (x, t)

2w′(x, x)
=
yx(x, t)
y(x, x)

=
wx(x, t)
w(x, x)

(0 ≤ t ≤ x ≤ N).(15.9)

More precisely, the ratios whose denominators are different from zero are equal to
one another; if a denominator equals zero, then the corresponding numerator is
identically equal to zero for t ∈ [0, x]. (As usual, the case x = 0 should be discussed
separately, but, also as usual, we leave this to the reader.) It follows from (15.9)
that

yx(x, t)w(x, x) = wx(x, t)y(x, x) (0 ≤ t ≤ x ≤ N),(15.10)

and this holds in all cases. Take derivatives with respect to x,

yxx(x, t)w(x, x) + yx(x, t)w′(x, x) = wxx(x, t)y(x, x) + wx(x, t)y′(x, x),

and subtract twice this equation from the identity

2w′(x, x)yx(x, t) = (wxx(x, t)− wtt(x, t)) y(x, x),

which follows from (15.9). We obtain

(wxx(x, t) + wtt(x, t)) y(x, x) = −2wx(x, t)y′(x, x) + 2w(x, x)yxx(x, t).(15.11)

If we interchange the roles of y and w, we get the analogous identity

(yxx(x, t) + ytt(x, t))w(x, x) = −2yx(x, t)w′(x, x) + 2y(x, x)wxx(x, t).(15.12)

Now subtract (15.11) from (15.12). On the right-hand side, we get zero because

− 2yx(x, t)w′(x, x) + 2y(x, x)wxx(x, t) + 2wx(x, t)y′(x, x)− 2w(x, x)yxx(x, t)

= 2∂x (y(x, x)wx(x, t)− w(x, x)yx(x, t)) ,

and the expression in parentheses is zero by (15.10). Hence

(wxx(x, t) + wtt(x, t)) y(x, x) = (yxx(x, t) + ytt(x, t))w(x, x).

Since ytx(x, t)w(x, x) = wtx(x, t)y(x, x) by (15.10) again, we also have that

(15.13) (wxx(x, t) + 2wtx(x, t) + wtt(x, t)) y(x, x) =

(yxx(x, t) + 2ytx(x, t) + ytt(x, t))w(x, x).

By the chain rule,

w′′(x, x) = (wxx(x, t) + 2wtx(x, t) + wtt(x, t))
∣∣
t=x

,
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so taking t = x in (15.13) yields

w(x, x)y′′(x, x)− y(x, x)w′′(x, x) =
d

dx
(w(x, x)y′(x, x)− w′(x, x)y(x, x)) = 0.

We determine the constant value of wy′ − w′y by evaluating at x = 0. Since
K(0, 0) = 0, we see directly from the integral equation (14.1) that p(x, x) = g(x) +
O(x2) for small x > 0, so p(0, 0) = g(0), p′(0, 0) = g′(0). Hence

y(0, 0) = 1, w(0, 0) = 0, y′(0, 0) = 0, w′(0, 0) = 1,

as claimed, and it also follows that yw′ − y′w = 1.

Proposition 15.4. Let H and y, w be as in Theorems 15.1 and 13.2, respectively.
Then

H11(x)w(x, x) = H12(x)y(x, x), H12(x)w(x, x) = H22(x)y(x, x).

Proof. These identities follow at once from Proposition 15.2 and (15.10).

16. Conclusion of the proof of Theorem 5.1

We are now in a position to verify the hypotheses of Proposition 8.1 for the
H constructed in Theorem 15.1. More precisely, we will transform the canonical
system one more time to obtain a new system satisfying the assumptions of Proposi-
tion 8.1. At the end, however, it will turn out that this transformation was actually
unnecessary.

We know from Theorem 14.1b) that the functions y(x, x), w(x, x) belong to
AC(2)[0, N ], and Proposition 15.3 implies that if y(x0, x0) = 0, then y′(x0, x0) 6= 0,
w(x0, x0) 6= 0. Thus y, w have only finitely many zeros in [0, N ] and they do not
vanish simultaneously. Also, Proposition 15.4 implies that H11w

2 = H22y
2. So we

may consistently define a function r ≥ 0 by

r(x) =

{
|y(x, x)|−1

√
H11(x) if y(x, x) 6= 0

|w(x, x)|−1
√
H22(x) if w(x, x) 6= 0

.

We now need a certain regularity of r (more precisely, we need that r ∈ AC(2)).
This can be established directly by showing that Hij ∈ AC(2)[0, N ]. Note, however,
that this statement is not obvious at this point because, for example, the second
derivative H ′′11, evaluated formally with the help of Proposition 15.2, contains the
third order derivative yxxx, which need not exist. Thus it is again easier to first
carry out this final part of the proof of Theorem 5.1 under the additional assumption
that φ ∈ C∞ and then pass to the general case by a limiting argument.

By Propositions 15.2, 15.3, y(0, 0) = H11(0) = 1, hence r(0) = 1. Also, since we
are assuming that φ ∈ C∞, the function r is also smooth as long as r > 0. Fix an
interval [0, L] ⊂ [0, N ], so that r > 0 on [0, L]. On this interval [0, L], we tranform
the canonical system as follows. Let

t(x) =
∫ x

0

r(s) ds (0 ≤ x ≤ L),

let x(t) be the inverse function, and define the new matrix H̃(t) = H(x(t))/r(x(t))
for 0 ≤ t ≤ t(L). Let u(x, z) be the solution of the original system

Ju′ = zHu, u(0, z) =
(

1
0

)
,
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and put ũ(t, z) = u(x(t), z). Then ũ solves the new equation

Jũ′ = zH̃ũ, ũ(0, z) =
(

1
0

)
;(16.1)

the corresponding de Branges spaces are related by B̃t = Bx(t).
Now the first line from the definition of r shows that

H̃11(t) = r(x(t))
H11(x(t))
r2(x(t))

= r(x(t))y2(x(t)),(16.2)

at least if y(x(t)) 6= 0. Here, y(x) is short-hand for y(x, x). However, as y and w
do not vanish simultaneously, Proposition 15.4 implies that H11(x) = 0 if y(x) = 0,
so (16.2) holds generally. Similar arguments apply to the other matrix elements:

H̃(t) = r(x(t))
(
y2(x(t)) (yw)(x(t))

(yw)(x(t)) w2(x(t))

)
≡
(
a2(t) (ab)(t)

(ab)(t) b2(t)

)
,

where a(t) = r1/2(x(t))y(x(t)), b(t) = r1/2(x(t))w(x(t)). Now as r > 0 on [0, L], we
have a, b ∈ C∞[0, t(L)] and

a(t)b′(t)− a′(t)b(t)

= r1/2(x(t))
(
y(x(t))

d

dt

(
r1/2(x(t))w(x(t))

)
− w(x(t))

d

dt

(
r1/2(x(t))y(x(t))

))
= r(x(t))

(
y(x(t))

d

dt
w(x(t))− w(x(t))

d

dt
y(x(t))

)
= (y(x)w′(x)− w(x)y′(x))

∣∣
x=x(t)

= 1

by Proposition 15.3. Moreover, a(0) = r1/2(0)y(0) = 1 and a′(0) = r1/2(0)y′(0) = 0
also by Proposition 15.3. Thus the canonical system (16.1) satisfies the assumptions
of Proposition 8.1. So (16.1) comes from a Schrödinger equation. In particular, we
have the following description of B̃t as a set:

B̃t = St =
{
F (z) =

∫ t

0

f(s) cos
√
zs ds : f ∈ L2(0, t)

}
.

On the other hand, B̃t = Bx(t) = Hx(t) by Theorem 15.1, and, again as sets,
Hx(t) = Sx(t) by the definition of Hx(t). We are forced to admit that x(t) = t for
all t ∈ [0, t(L)].

In other words, we have shown that if r > 0 on [0, L], then r ≡ 1 on [0, L]. Also,
as noted at the beginning of the argument, r(0) = 1, so the set of L’s such that
r ≡ 1 on [0, L] is nonempty and closed and open in [0, N ], hence r ≡ 1 on all of
[0, N ].

So in reality, there has been no transformation, and the system (16.1) is the
system from Theorem 15.1. This system is equivalent to a Schrödinger equation,
that is, there exists V ∈ L1(0, N), so that Hx = Bx = Sx (as de Branges spaces).
In particular, we may specialize to x = N , and we have thus proved Theorem 5.1
under the additional assumption that φ ∈ C∞.

The extension to the general case is routine. As usual, approximate φ′ in
L1(−2N, 2N) by odd functions φ′n ∈ C∞0 (−2N, 2N) and put φn(x) =

∫ x
0
φ′n(t) dt.

Then φn ∈ C∞ ∩ ΦN for all sufficiently large n.
As a by-product of the above argument, we have the formulae

H11(x) = y2(x, x), H12(x) = y(x, x)w(x, x), H22(x) = w2(x, x),(16.3)
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which are valid for smooth φ. So we may use (16.3) if we replace φ by φn. Now
if n → ∞, all quantities converge pointwise to the right limits; for the matrix
elements Hij , this follows from Proposition 15.2. So (16.3) holds in the general
case as well. Now a glance at Theorem 14.1b) and Proposition 15.3 suffices to
verify the hypotheses of Proposition 8.1 (for the canonical system from Theorem
15.1; no transformation is needed this time). This completes the proof of Theorem
5.1.

17. Half line problems

In this section, we discuss half line problems, that is, operators of the form
−d2/dx2 + V (x) on L2(0,∞). We assume, as usual, that V ∈ L1,loc([0,∞)). Our
presentation in this section will be less detailed.

Of course, in a sense, half line problems are contained in our previous treatment
because we may analyze the problem on (0,∞) by analyzing it on (0, N) for everyN .
More precisely, Theorems 4.1, 4.2, 5.1, and 5.2, applied with variable N > 0, give a
one-to-one correspondence between functions φ ∈

⋂
N>0 ΦN and locally integrable

potentials V : [0,∞) → R. Here we say that φ ∈
⋂
N>0 ΦN if the restriction of

φ to [−2N, 2N ] belongs to ΦN for every N > 0. The uniqueness assertions from
Theorem 5.2 make sure that there are no consistency problems. For example, the
following holds: If N1 < N2, φNi ∈ ΦNi and φN1 = φN2 on [−2N1, 2N1], then, by
Theorem 5.2b), the corresponding potentials satisfy V1 = V2 on (0, N1).

This local treatment looks most natural and satisfactory, but it is also reasonable
to ask for conditions that characterize the spectral measures of half line problems.
In particular, this will relate our results to the Gelfand-Levitan characterization of
spectral data.

Given a potential V ∈ L1,loc([0,∞)), we call a positive Borel measure ρ on
R a spectral measure of the half line problem if the de Branges spaces SN are
isometrically contained in L2(R, dρ) for all N > 0. In other words, we demand that

‖F‖2SN =
∫
R

|F (λ)|2 dρ(λ) ∀F ∈
⋃
N>0

SN .

Borrowing the terms commonly used for discrete problems, we may also say that the
spectral measures are precisely the solutions of a (continuous version of a) certain
moment problem. By Theorem 3.2b), the measures from Weyl theory are indeed
spectral measures in this sense. In particular, given a potential V ∈ L1,loc([0,∞)),
spectral measures always exist. The spectral measure is unique precisely if V is in
the limit point case at infinity. Indeed, if V is in the limit circle case, any choice
of a boundary condition at infinity yields a spectral measure, and there are many
others. For instance, one can form convex combinations or, more generally, averages
of these measures. Conversely, if V is in the limit point case, then uniqueness of the
spectral measure follows from the Nevanlinna type parametrization of the measures
µ for which L2(R, dµ) isometrically contains SN together with the fact that the Weyl
circles shrink to points.

The Gelfand-Levitan conditions characterize the spectral measures of half line
problems. We now want to demonstrate that such a characterization also follows in
a rather straightforward way from our direct and inverse spectral theorems (Theo-
rems 4.1, 4.2, 5.1, and 5.2) and some standard material.



52 CHRISTIAN REMLING

For a positive Borel measure ρ, introduce the signed measure σ = ρ− ρ0 (where
ρ0 is the measure for zero potential from (4.9)), and consider the following two
conditions.

1. If F ∈
⋃
N>0 SN ,

∫
|F (λ)|2 dρ(λ) = 0, then F ≡ 0.

2. For every g ∈ C∞0 (R), the integral
∫
dσ(λ)

∫
dx g(x) cos

√
λx converges abso-

lutely: ∫ ∞
−∞

d|σ|(λ)
∣∣∣∣∫ ∞
−∞

dx g(x) cos
√
λx

∣∣∣∣ <∞.
Moreover, there exists an even, real valued function φ ∈ AC(1)(R) with φ(0) =
0, so that∫ ∞

−∞
dσ(λ)

∫ ∞
−∞

dx g(x) cos
√
λx =

∫ ∞
−∞

g(x)φ(x) dx

for all g ∈ C∞0 (R).
The set of ρ’s satisfying these two conditions will be denoted by GL, for Gelfand-
Levitan. We do not require that

⋃
SN ⊂ L2(R, dρ), so at this point, we cannot

exclude the possibility that for fixed ρ ∈ GL, there exists F ∈
⋃
SN with

∫
|F |2 dρ =

∞. However, we will see in moment that actually there are no such F ’s.
Our definition ofGL is inspired by Marchenko’s treatment of the Gelfand-Levitan

theory (see especially [23, Theorem 2.3.1]). Note, however, that Marchenko does
not regularize by subtracting ρ0, but by using the analog of the function ψ from
Sect. 13 instead of φ. Moreover, he uses a space of test functions tailor made for
the discussion of Schrödinger operators, and he assumes continuity of the potential.

Theorem 17.1. a) For every ρ ∈ GL, there exists a unique V ∈ L1,loc([0,∞)) so
that ρ is a spectral measure of −d2/dx2 + V (x).
b) If ρ is a spectral measure of −d2/dx2 + V (x), then ρ ∈ GL.

Proof. a) A computation using condition 2. from the definition of GL shows that
for every f ∈ C∞0 (R), the function

F (λ) =
∫
R

f(x) cos
√
λx dx

belongs to L2(R, dρ) and

‖F‖2L2(R,dρ) = ‖f‖2L2(R) + Re
∫ ∞
−∞

f(−t)f(t) dt

+
∫
R

∫
R

ds dt f(s)f(t)
1
2

(φ(s− t) + φ(s+ t)) .

The first two terms come from the Plancherel type relation∫
R

|F (λ)|2 dρ0(λ) = ‖f‖2L2(R) + Re
∫ ∞
−∞

f(−t)f(t) dt.

It follows that the identity

‖F‖2L2(R,dρ) = 〈f, (1 +Kφ)f〉L2(0,N)(17.1)

holds if f ∈ C∞0 (0, N). By a density argument and the fact that norm convergent
sequences have subsequences that converge almost everywhere, condition 1. now
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implies that 1+Kφ > 0 as an operator on L2(0, N). So φ ∈ ΦN , and from Theorem
5.1, we thus get V ∈ L1(0, N), so that

‖F‖2SN = 〈f, (1 +Kφ)f〉L2(0,N)

for all F ∈ SN . Hence ‖F‖SN = ‖F‖L2(R,dρ) for all F as above with f ∈ C∞0 (0, N).
Again by a density argument, this relation actually holds on all of SN .

The whole argument works for arbitrary N , and, as observed above, Theorem
5.2b) implies that there are no consistency problems. We obtain a locally integrable
potential V on [0,∞), so that ‖F‖SN = ‖F‖L2(R,dρ) for all F ∈

⋃
SN . In other

words, ρ is a spectral measure of −d2/dx2 + V (x).
Uniqueness of V is clear because (17.1) forces us to take V on (0, N) so that the

norm on SN is the one determined by Kφ; so once φ is given, there is no choice by
Theorem 5.2b) again. But clearly φ is uniquely determined by the measure σ and
hence also by ρ.

b) Property 1. is obvious from the equality ‖F‖L2(R,dρ) = ‖F‖SN . To establish
property 2., we use the well known estimates ([23, Sect. 2.4]; compare also [15])

lim
L→∞

ρ((−∞,−L))ea
√
L = 0 ∀a > 0,

∫
R

dρ(λ)
1 + λ2

<∞.

As |σ| ≤ ρ+ ρ0, the absolute convergence of
∫
dσ(λ)

∫
dx g(x) cos

√
λx for g ∈ C∞0

follows. Moreover, this integral depends continuously on g ∈ D = C∞0 (R) and
hence defines a distribution. Now let f1, f2 ∈ C∞0 (R) be even functions. Then

Fi(z) ≡
∫ ∞
−∞

fi(x) cos
√
zx dx = 2

∫ ∞
0

fi(x) cos
√
zx dx ∈

⋃
SN ,

and by a calculation,

[F1, F2]SN = 〈F1, F2〉L2(R,dρ)

= 4〈f1, f2〉L2(0,∞) +
∫ ∞
−∞

dσ(λ)
∫ ∞
−∞

dx g(x) cos
√
λx,

where N must be chosen so large that F1, F2 ∈ SN and

g(x) ≡ 1
2

∫ ∞
−∞

f1

(
x+ y

2

)
f2

(
x− y

2

)
dy.(17.2)

On the other hand, we have that

[F1, F2]SN = 4〈f1, (1 +Kφ)f2〉 = 4〈f1, f2〉L2(0,∞) +
∫ ∞
−∞

g(x)φ(x) dx,

where φ ∈
⋂

ΦN is the function from Theorem 4.2. Hence∫ ∞
−∞

dσ(λ)
∫ ∞
−∞

dx g(x) cos
√
λx =

∫ ∞
−∞

g(x)φ(x) dx(17.3)

for every g that is of the form (17.2) with even fi ∈ C∞0 (R). We claim that this set
of g’s is rich enough to guarantee the validity of (17.3) for arbitrary g ∈ C∞0 (R).
To see this, one can proceed as follows. By a change of variables, (17.2) becomes

g(x) =
∫ ∞
−∞

f1(x− u)f2(u) du =
(
f1 ∗ f2

)
(x).

We can take f1 as an approximate identity, that is, f1(x) = nϕ(nx), where
∫
ϕ = 1

and let n → ∞. It follows that the set of g’s of the form (17.2) is dense (in the
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topology of D = C∞0 (R)) in the set of even test functions. Moreover, for odd test
functions g, ∫ ∞

−∞
dσ(λ)

∫ ∞
−∞

dx g(x) cos
√
λx =

∫ ∞
−∞

g(x)φ(x) dx = 0.

By combining these facts, we deduce that (17.3) holds for every g ∈ C∞0 (R), as
claimed.

We have no uniqueness statement in Theorem 17.1b): for a given V , there may be
many ρ’s. However, this only comes from the fact that we have insisted on working
with spectral measures. Clearly, in addition to the bijection V ↔ φ between L1,loc

and
⋂

ΦN discussed at the beginning of this section, we also have a one-to-one
correspondence between potentials V and, let us say, distributions

g 7→
∫ ∞
−∞

dσ(λ)
∫ ∞
−∞

dx g(x) cos
√
λx.

However, this distribution determines the measure σ (and thus ρ) only if (in fact,
precisely if) we have limit point case at infinity. This remark again confirms our
claim that in inverse spectral theory, the function φ is the more natural object.

18. Some remarks

The proof of Theorem 5.1 has indicated at least two methods of reconstructing
the potential V from the spectral data φ. One consists of solving the integral
equation for y (say),

y(x, t) +
∫ x

0

K(t, s)y(x, s) ds = 1.

By (16.3) and Proposition 8.1, V = y′′w′ − w′′y′, and since yw′′ = wy′′ and
yw′ − y′w = 1, we can compute the potential V from this solution y by V (x) =
y′′(x, x)/y(x, x). This way of finding V is quite similar to the Gelfand-Levitan
procedure, where one solves the integral equation

z(x, t) +
∫ x

0

K(t, s)z(x, s) ds = −K(x, t)

for z and computes the potential as V (x) = z′(x, x) (see [21, Chapter 2]). Loosely
speaking, our function y(x, t) is a two-point version of the solution y(x) to −y′′ +
V y = 0 with the initial values y(0) = 1, y′(0) = 0.

Our proof of Theorem 5.1 also admits a second, completely different interpreta-
tion. Namely, the integral equations for y, w may be viewed as an auxiliary tool
needed to show that the canonical system that was constructed with the aid of
Theorem 7.3 is equivalent to a Schrödinger equation. In other words, if one has a
constructive proof of Theorem 7.3, one may apply the corresponding reconstruc-
tion procedure and one automatically obtains a canonical system that satisfies the
hypotheses of Proposition 8.1, possibly after some modifications: deletion of an
initial singular interval, introduction of a new independent variable to match the
de Branges spaces and finally a transformation of the type H → Hc, as in the proof
of Theorem 15.1. (Actually, this last transformation does not affect H11(x) and,
by the above, is thus not needed to compute V (x).) Put differently, this means
that work on constructive inverse spectral theory of canonical systems always has
implications in the inverse spectral theory of Schrödinger operators as well.
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In [6], Theorem 7.3 is proved as follows. The first step is to approximate the
de Branges function E by polynomial de Branges functions En. The construction
of (discrete) canonical systems for En can be carried out using elementary methods
only (for instance, orthogonalization of polynomials). Finally, one passes to the
limit n→∞. See also [26, 32] for completely different views on Theorem 7.3.

As a final remark, we would like to point out that the transformation from a
Schrödinger equation to a canonical system regularizes the coefficients. Indeed,
H ∈ AC(2), while in general, one only has V ∈ L1. This effect will be particularly
convenient if one considers Schrödinger operators with, let us say, measures or even
more singular distributions as potentials. The theory of canonical systems and
de Branges spaces seems to provide us with a particularly appropriate approach to
the direct and inverse spectral theory of such operators.

19. Dirichlet boundary conditions

We now consider the Schrödinger equation (3.1) with Dirichlet boundary con-
dition at the origin: y(0) = 0. In inverse spectral theory, the case of Dirichlet
boundary conditions often poses additional technical problems (for instance, in
[14, 22, 23], Dirichlet boundary conditions are not discussed). This seems to hold
to a lesser extent for the approach developed in this paper. All results presented
so far have direct analogs, and in most cases, no new ideas are needed.

We will now give a very sketchy exposition of these results. In fact, I have
already used part of this material in [25]. This reference also contains additional
hints concerning the proofs. We continue to use the symbols SN , Kφ, φ etc., but of
course these quantities will not be identical with their counterparts for Neumann
boundary conditions.

One now defines u(x, z) as the solution of (3.1) with the initial values u(0, z) =
0, u′(0, z) = 1. Then, as in Sect. 3, one can form the de Branges function
EN (z) = u(N, z) + iu′(N, z), and B(EN ) ≡ SN can again be identified with the
spaces L2(R, dρβN ) from the spectral representation. Theorems 4.1, 4.2 have direct
analogs. More precisely, one always has (that is, independently of the potential
V ∈ L1(0, N))

SN =

{
F (z) =

∫ N

0

f(x)
sin
√
zx√
z

dx : f ∈ L2(0, N)

}
.

Moreover, for any given V ∈ L1(0, N), there exists a real valued, even function
φ ∈ AC(1)[−2N, 2N ] with φ(0) = 0 so that for all F ∈ SN ,

‖F‖2SN = 〈f, (1 +Kφ)f〉L2(0,N).

Here, Kφ again is an integral operator on L2(0, N), but this time with kernel

K(x, t) =
1
2

(φ(x− t)− φ(x+ t))

(note the minus sign!). Finally, we still have the inverse and uniqueness results from
Sect. 5. In other words, there is a one-to-one correspondence between potentials
V ∈ L1(0, N) and φ functions φ ∈ ΦN . Here, we again define ΦN by

ΦN =
{
φ ∈ AC(1)[−2N, 2N ] : φ real valued, even, φ(0) = 0, 1 +Kφ > 0

}
.

More on these results can be found in [25]. Note also that the condition that
φ(0) = 0 now has a somewhat different meaning: in fact, it is a normalization
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rather than a condition because obviously one can add constants to φ without
changing Kφ.

We conclude this paper with a characterization of the half line spectral data in
the case of Dirichlet boundary conditions. This result is the analog of Theorem 17.1.
The referee has pointed out that this seems to be the first such characterization
in this generality ([21], for instance, has continuity assumptions on the potential).
We again define spectral measures as those positive Borel measures ρ on R which
integrate functions from

⋃
SN correctly: ‖F‖L2(R,dρ) = ‖F‖SN for all F ∈

⋃
SN .

Also, given ρ, we again introduce the signed measure σ = ρ − ρ0, where dρ0(λ) =
χ(0,∞)(λ)

√
λ dλ
π is the (unique) spectral measure of the half line problem for zero

potential. Here are the conditions that characterize spectral measures.

1. If F ∈
⋃
N>0 SN ,

∫
|F (λ)|2 dρ(λ) = 0, then F ≡ 0.

2. For every g ∈ C∞0 (R) with
∫
g = 0, the integral

∫
dσ(λ)

∫
dx g(x) cos

√
λx−1
λ

converges absolutely:∫ ∞
−∞

d|σ|(λ)

∣∣∣∣∣
∫ ∞
−∞

dx g(x)
cos
√
λx− 1
λ

∣∣∣∣∣ <∞.
Moreover, there exists an even, real valued function φ ∈ AC(1)(R) with φ(0) =
0, so that∫ ∞

−∞
dσ(λ)

∫ ∞
−∞

dx g(x)
cos
√
λx− 1
λ

=
∫ ∞
−∞

g(x)φ(x) dx

for all g ∈ C∞0 (R) with
∫
g = 0.

Here, we of course interpret cos
√
λx−1
λ

∣∣∣
λ=0

= −x2/2. For λ 6= 0, the 1 in the

numerator can actually be dropped since
∫
g = 0. In particular, this remark shows

that the x integral is rapidly decaying as λ→∞. Condition 2. admits the following
reformulation:

2’. For every h ∈ C∞0 (R), the integral
∫
dσ(λ)

∫
dxh(x) sin

√
λx√
λ

converges abso-
lutely: ∫ ∞

−∞
d|σ|(λ)

∣∣∣∣∣
∫ ∞
−∞

dxh(x)
sin
√
λx√
λ

∣∣∣∣∣ <∞.
Moreover, there exists an odd, real valued function φ′ ∈ L1,loc(R), so that∫ ∞

−∞
dσ(λ)

∫ ∞
−∞

dxh(x)
sin
√
λx√
λ

= −
∫ ∞
−∞

h(x)φ′(x) dx

for all h ∈ C∞0 (R).

To prove that 2. and 2’. are equivalent, observe that g ∈ C∞0 (R),
∫
g = 0 precisely

if g = h′ for some h ∈ C∞0 (R), and integrate by parts.
As expected, we denote by GL the set of ρ’s satisfying conditions 1. and 2. (or

equivalently, 1. and 2’.).

Theorem 19.1. a) For every ρ ∈ GL, there exists a unique V ∈ L1,loc([0,∞)) so
that ρ is a spectral measure of −d2/dx2 + V (x).
b) If ρ is a spectral measure of −d2/dx2 + V (x), then ρ ∈ GL.
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Sketch of proof. a) Proceed as in the proof of Theorem 17.1a). The only place
where an additional observation is needed is at the beginning of the argument.
Here, we put, for f ∈ C∞0 (R), F (λ) =

∫
R
f(x) sin

√
λx√
λ

dx, and we want to show by a
calculation that∫

R

|F (λ)|2 dσ(λ) =
1
2

∫ ∞
−∞

∫ ∞
−∞

dx dt f(x)f(t) (φ(x− t)− φ(x+ t)) .(19.1)

This works well for odd f , and this is already the general case because we can
decompose an arbitrary f into odd and even parts and the contributions containing
even functions are zero on both sides of (19.1).

b) As in the proof of Theorem 17.1b), condition 1. is obvious from the defining
property of spectral measures. If ρ is a spectral measure, then∫ 0

−∞
eL
√
−λ dρ(λ) <∞ ∀L > 0,

∫
R

dρ(λ)
1 + λ2

<∞.

See [15, Sect. 6]; actually, this reference uses the term “spectral measure” in a
slightly more restrictive sense, but the method of proof extends to our setting if
combined with the Nevanlinna type parametrization of the spectral measures from
[9].

The above estimates imply the absolute convergence of the integral from con-
dition 2. As in the proof of Theorem 17.1b), one shows that with φ being the φ
function corresponding to the given potential V , the desired identity∫ ∞

−∞
dσ(λ)

∫ ∞
−∞

dx g(x)
cos
√
λx− 1
λ

=
∫ ∞
−∞

g(x)φ(x) dx

holds for functions g that are of the form g = f1∗f2 with odd functions fi ∈ C∞0 (R).
Alternately, if we pass to formulation 2’. by integrating by parts, this says that∫ ∞

−∞
dσ(λ)

∫ ∞
−∞

dxh(x)
sin
√
λx√
λ

= −
∫ ∞
−∞

h(x)φ′(x) dx(19.2)

for all h = F1 ∗ f2 with F1 even, f2 odd, F1, f2 ∈ C∞0 (R). (Of course, F1 is just
F1(x) =

∫ x
−∞ f1(t) dt.) By the argument from the proof of Theorem 17.1b), (19.2)

now follows for all odd h ∈ C∞0 (R). For even h ∈ C∞0 (R), (19.2) is trivially satisfied:
both sides are equal to zero.
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