
WEYL THEORY

CHRISTIAN REMLING

Abstract. This is an attempt to advertise the use of matrix notation for linear

fractional transformations and of (pseudo)hyperbolic distance in the context

of the theory of Titchmarsh-Weyl m functions for second order operators.

My goal is to convince the reader that the notation that will be discussed below
is a good choice in the context of the theory of Titchmarsh-Weyl m functions. I
will present the bare minimum of material needed to make this case. For example,
I work in the discrete setting exclusively, although an analogous treatment can be
given for continuous operators. I should also make it clear from the beginning that
nothing in this note is new.

Consider a Jacobi difference equation

(1.1) a(n)y(n + 1) + a(n− 1)y(n− 1) + b(n)y(n) = zy(n).

There is a whole zoo of Titchmarsh-Weyl m functions associated with (1.1), so
there can’t be one universal simple definition. The following recipe seems quite
comprehensive, though. Let f(n, z) be a solution of (1.1) and specify the value of
the quotient

M(n, z) = − f(n + 1, z)
a(n)f(n, z)

at some n. Then evolve according to (1.1) to obtain m functions.
For example, if M(N, z) = q ∈ R, then m(z) = M(0, z) is the m function of the

problem on {1, . . . , N} with boundary condition q at N .
A linear fractional transformation is a map of the form

z 7→ az + b

cz + d
,

with a, b, c, d ∈ C, ad − bc 6= 0. These can be handled very conveniently using
matrix notation, as follows: define

Sz =
az + b

cz + d
, S ≡

(
a b
c d

)
.

This notation has a natural interpretation: Identify z ∈ C ⊂ CP1 with its homo-
geneous coordinates z = [z : 1] and apply the matrix S to the vector (z, 1)t whose
components are these homogeneous coordinates. The image vector S(z, 1)t then
tells us what the homogeneous coordinates of the image of z under the linear frac-
tional transformation are. In particular, this recipe can also be used to describe
the action of S on the whole Riemann sphere C∞ ∼= CP1.
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These remarks also show that the matrix product corresponds to the composi-
tion. Put differently, the association

S 7→ linear fractional transformation

is a group homomorphism between GL(2, C) and the non-constant linear fractional
transformations.

The formalism immediately yields the familiar geometry of nested disks. Indeed,
note that by (1.1), the matrix S that updates the vector (f(n+1, z),−a(n)f(n, z))t

is given by(
f(n + 1, z)
−a(n)f(n, z)

)
= S(a(n), z − b(n))

(
f(n, z)

−a(n− 1)f(n− 1, z)

)
,

S(a,w) ≡
(

w/a 1/a
−a 0

)
.(1.2)

Thus we also have that M(n, z) = S(a(n), z − b(n))M(n − 1, z). We abbreviate
Sn(z) ≡ S(a(n), z − b(n)) and Tn(z) = Sn(z)−1, and, for z ∈ C+, we introduce

(1.3) Dn(z) =
{

T1(z)T2(z) · · ·Tn(z)w : w ∈ C+
}

.

Here, the closure of the upper half plane is taken in the Riemann sphere, so it
includes the point ∞. The linear fractional transformations Tj(z) map C+ into
itself if z ∈ C+. This follows conveniently from formula (1.6) below. Since ∂Dn(z)
is the image of R ∪ {∞} under a linear fractional transformation, it follows that
Dn(z) is a disk which is contained in C+. Moreover, it is obvious from (1.3) that
Dn+1(z) ⊂ Dn(z), so these disks are indeed nested.

Finally, (1.3) also provides an interpretation of Dn(z): The interior of this disk
is exactly the collection of those values that m(z) = M(0, z) can take if we know
the coefficients a(j), b(j) on the interval 1 ≤ j ≤ n.

As is well known, an immediate consequence of this geometry is the fact that as
n → ∞, the disks Dn(z) approach a limiting object, which must be either a point
or a circle. Which of these alternatives holds is independent of z ∈ C+ for a given
Jacobi operator.

Theorem 1.1. Let q : C+ → C+ be a holomorphic function. Assume limit point
case, and let M(z) be the unique limit point of the Dn(z). Then

(1.4) T1(z)T2(z) · · ·Tn(z)q(z) → M(z),

as n →∞, for all z ∈ C+ (and in fact locally uniformly on C+).

This is of course obvious from the preceding discussion, except perhaps for the
final claim, which, for example, follows from a normal families argument. The
function q plays the role of a choice function; it picks one point from every Weyl
disk Dn(z).

Being obvious doesn’t prevent the Theorem from also being very useful. The
convergence of the Herglotz functions implies the (weak ∗) convergence of the asso-
ciated measures. For example, the special case q ≡ i gives the following well known
result. Write v(n, z) for the solution of (1.1) with the initial values a(0)v(0, z) = 0,
v(1, z) = 1. Then the spectral measure ρ of the half line Jacobi operator can be
obtained as the (weak ∗) limit

(1.5) dρ(t) =
1
π

lim
n→∞

dt

a(n)2v(n, t)2 + v(n + 1, t)2
.
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This can now be proved as follows. Introduce the solution u by requiring that
a(0)u(0, z) = 1, u(1, z) = 0. Denote the left-hand side of (1.4) by Mn(z) and note
that fn(j, z) = u(j, z) − Mn(z)v(j, z) solves (1.1) and −fn(1, z)/(a(0)fn(0, z)) =
Mn(z), and at j = n, this quotient equals q(z) = i by the definition of Mn(z). This
implies that

Mn(z) =
u(n + 1, z) + ia(n)u(n, z)
v(n + 1, z) + ia(n)v(n, z)

,

and another short computation then shows that the measure associated with Mn

is given by the right-hand side of (1.5).
A change of boundary condition can also be described very conveniently in this

setting. More precisely, if either m(z) = M(0, z) or m(z) is a half line m function
(and thus a limit of m’s of the first type), then mt(z) = Atm(z) with

At = S−1(a,w − t)S(a,w) =
(

1 0
t 1

)
is the m function for the problem with the modified coefficient bt(1) = b(1)+ t. See
[2] for more on this.

The pseudohyperbolic distance on C+ is often helpful in this context. It can be
used to analyze the shrinking (or expanding) sets that were discussed above more
quantitatively. One can work with the following definition:

γ(w, z) =
∣∣∣∣w − z

w − z

∣∣∣∣ (w, z ∈ C+).

Then holomorphic self-maps of C+ (such as the linear fractional transformations
Tj(z) from above) are distance decreasing. In particular, automorphisms of C+ are
isometries with respect to γ. Recall that S ∈ Aut(C+) precisely if its matrix has
real entries and positive determinant.

The inverses of the matrices S from (1.2) have the factorization

(1.6) S(a,w)−1 =
(

0 −1
1 0

) (
1 w
0 1

) (
a 0
0 1/a

)
≡ JT0A.

Here, A, J ∈ Aut(C+) are isometries with respect to γ, and T0(w)ζ = ζ + w is a
translation. See [3, Appendix A] for an application of these ideas.
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