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Abstract

Let d be the degree of an irreducible character of a finite group G. We can write
|G| = d(d + e) for some non-negative integer e. In this document, we prove that
if e > 1 then |G| < e6 − e4. This improves an upper bound found by Isaacs of the
form Be6, where B is an unknown universal constant. We also describe conditions
sufficient to sharpen this bound to |G| ≤ e4−e3. In addition, we remove the appeal
to the classification of simple groups, which is used in the original paper by Isaacs.
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1 Introduction

Let d be the degree of an irreducible character of a finite group G. We know that d
divides |G| and moreover that d2 ≤ |G|. We can therefore write |G| = d(d + e) for
some non-negative integer e. It is clear that if e = 0 then G must be the trivial group.
Similarly the case where e = 1 has been fully classified; in fact, e = 1 if and only if either
|G| = 2 or G is a 2-transitive Frobenius group. For a proof of this fact, see Proposition
2.1 of [4].

The case where e = 1 is in fact an anomaly as there is no upper bound on |G| in
this case. It was first proved by N. Snyder in [4] that for e ≥ 2 there is an upper bound
on |G| in terms of e. The cases where e = 2 and e = 3 were also fully classified by
Snyder, and Isaacs later proved in [3] that there is a polynomial bound for the order of G
given by Be6, where B is some universal constant. In order to obtain this bound, Isaacs
needed to appeal to the classification of simple groups. In this document, we eliminate
the unknown constant B to obtain a bound of e6 − e4, and we do so without an appeal
to the classification. In addition, we see that it is possible in many cases to obtain the
bound of e4 + e3 and we describe a condition sufficient to guarantee a bound of e4 − e3.

After a few definitions and technical theorems, our main result is the following. It
appears as a corollary to a technical theorem.

Theorem A. For e > 1 we have the following bounds on |G| in terms of e;

(a) If e is divisible by two distinct primes then |G| < e4 + e3.

(b) If e is a prime power then |G| < e6 − e4.

(c) If e is prime then |G| < e4 + e3.

We mention here that the largest group order we know of for a given e value is
|G| = e4 − e3 where e is a prime power. This example is described in detail in Isaacs’
paper [3]. In fact under certain conditions, we can show that this is the largest possible
group order, as described in the following result.

Theorem B. Suppose G has a non-trivial abelian normal subgroup.

(a) If e is prime then |G| ≤ e4 − e3.

(b) If e is divisible by two distinct primes then |G| < e4 − e3.

2 Assumptions and Basic Facts

We mention a few notational conventions which will help facilitate our discussion. Through-
out this paper, we will assume e ≥ 1. We fix χ ∈ Irr(G) to have degree d, and we will
consistently write |G| = d(d+ e). Notice that if d ≤ e then |G| = d(d+ e) ≤ e(2e) = 2e2.
We can therefore take d > e, where the situation becomes more interesting.
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Lemma 2.1. If d > e then the character χ is rational valued, it is the unique character
of largest degree in Irr(G), and Z(χ) = 1. In particular, χ is faithful.

Proof. Since d > e, we have |G| = d2 + ed < 2d2. If ψ ∈ Irr(G) is different from χ
and ψ(1) ≥ d, then we would have 2d2 ≤ χ(1)2 + ψ(1)2 ≤ |G| < 2d2, a contradiction.
Therefore d is the largest irreducible character degree and χ is unique of degree d. From
this, it follows that χ is rational valued.

To see that χ is faithful, we use an argument presented both by Snyder in [4] and
Isaacs in [3]. Let x ∈ G with x 6= 1. By the second orthogonality relation, we have

0 =
∑

ψ∈Irr(G)

ψ(1)ψ(x) = dχ(x) +
∑
ψ 6=χ

ψ(1)ψ(x) .

That is, −dχ(x) =
∑
ψ 6=χ

ψ(1)ψ(x), and taking absolute values yields

d|χ(x)| ≤
∑
ψ 6=χ

ψ(1)|ψ(x)| ≤
∑
ψ 6=χ

ψ(1)2 = |G| − χ(1)2 = ed .

Canceling d’s from both sides tells us that |χ(x)| ≤ e < d for all x 6= 1, so the assumption
that e < d allows us to conclude that χ has a trivial center and also that χ is faithful.

3 Character Domination and Main Result

Definition 3.1. Given α, β ∈ Irr(G), we say that α dominates β (or β is dominated
by α) if βα = β(1)α. ( Note that this is equivalent to saying that α is the only irreducible
constituent of βα ).

Throughout this paper, we refer to the vanishing-off subgroup of a character α, which
we denote by V(α). This is the subgroup of G generated by the elements g ∈ G for
which α(g) 6= 0. Note that as α is constant on the conjugacy classes of G, this subgroup
is necessarily normal in G.

Lemma 3.2. Let α, β ∈ Irr(G). Then α dominates β if and only if V(α) ⊆ ker(β).

Proof. Suppose V(α) ⊆ ker(β). Then if g ∈ V(α), we have g ∈ ker(β) so
(βα)(g) = β(g)α(g) = β(1)α(g). If g /∈ V(α) then α(g) = 0, so we have (βα)(g) =
β(g)α(g) = 0 = β(1)α(g). In either case, (βα)(g) = β(1)α(g) for all g ∈ G.

Conversely, suppose that βα = β(1)α. Then for any element g ∈ G such that
α(g) 6= 0, we have β(g)α(g) = β(1)α(g), so canceling α(g) gives β(g) = β(1) and
g ∈ ker(β). As V(α) is generated by all g ∈ G for which α(g) 6= 0, this implies that
V(α) ⊆ ker(β).
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We now return to the situation where |G| = d(d+e) and χ ∈ Irr(G) has degree d. We
continue to assume that d > e. For the rest of this section, we will write V for V(χ) ⊆ G.

Theorem 3.3. Suppose there exists ψ ∈ Irr(G) \ {χ} such that χ does not dominate ψ.
Then d3 ≤ (de− |G : V |)2.

Proof. Write {ψ1, . . . , ψn} to denote Irr(G) \ {χ}. For ψi ∈ Irr(G) \ {χ}, write

χψi = biχ+
n∑
j=1

aijψj ,

where aij = [χψi, ψj] and bi = [χψi, χ]. Evaluating χψi at the identity gives

dψi(1) = dbi +
n∑
j=1

aijψj(1), and then solving for bi we get

bi = ψi(1)− 1

d

n∑
j=1

aijψj(1) . (1)

Next, consider the character χ2. As χ is real-valued by Lemma 2.1, we know that
bi = [χψi, χ] = [ψi, χ

2]. We can therefore write χ2 as

χ2 = cχ+
n∑
i=1

biψi ,

where c = [χ2, χ]. Evaluating at the identity and plugging in the values for bi from
equation (1) gives

d2 = cd+
n∑
i=1

(
ψi(1)− 1

d

n∑
j=1

aijψj(1)

)
ψi(1) = cd+

n∑
i=1

ψi(1)2− 1

d

n∑
i=1

n∑
j=1

aijψi(1)ψj(1) .

We can simplify the term
n∑
i=1

ψi(1)2 by observing that it is the sum of the squares

of all the irreducible characters other than χ. It follows that
n∑
i=1

ψi(1)2 = |G| − χ(1)2 =

d(d+ e)− d2 = de. Thus we have

d2 = dc+ de− 1

d

n∑
i=1

n∑
j=1

aijψi(1)ψj(1) .

Some rearranging gives

d2(c+ e− d) =
n∑
i=1

n∑
j=1

aijψi(1)ψj(1) . (2)
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The right hand side of equation (2) must be a non-negative integer as all aij are
non-negative integers. In fact, it is a positive integer if there exists some aij which is
non-zero. Also, as c, d, and e are integers, equation (2) implies that d2 divides the double

sum
n∑
i=1

n∑
j=1

aijψi(1)ψj(1).

By assumption, there is some irreducible character other than χ which is not dom-
inated by χ. Without loss, assume ψ1 is not dominated by χ. Thus χψ1 must have a
constituent other than χ so a1j 6= 0 for some 1 ≤ j ≤ n, and the right hand side of (2) is
a positive integer divisible by d2. In particular, we have

d2 ≤
n∑
i=1

n∑
j=1

aijψi(1)ψj(1) . (3)

We can order the ψi so that the first m of them are precisely the ones which are not
dominated by χ, where 1 ≤ m ≤ n. Then if ψi is dominated by χ, (i.e. if i > m) then
aij = 0 for all 1 ≤ j ≤ n. Also, as aij = [χψi, ψj] = [ψi, χψj] = aji, we have that aij = 0 if
either i or j is greater than m. We can therefore simplify the right hand side of inequality
(3) to get

d2 ≤
m∑
i=1

m∑
j=1

aijψi(1)ψj(1) . (4)

We now wish to find an upper bound for aij in terms of ψi(1), ψj(1), and χ(1). By
definition, aij = [χψi, ψj] = [χ, ψiψj] so aij is the multiplicity of χ in ψiψj, and thus

aij ≤
ψi(1)ψj(1)

χ(1)
=
ψi(1)ψj(1)

d
. Replacing aij with this upper bound in inequality (4)

yields

d2 ≤
m∑
i=1

m∑
j=1

aijψi(1)ψj(1) ≤ 1

d

m∑
i=1

m∑
j=1

ψi(1)2ψj(1)2 .

Multiplying both sides by d we get

d3 ≤
m∑
i=1

m∑
j=1

ψi(1)2ψj(1)2 =

(
m∑
i=1

ψi(1)2

)2

. (5)

The characters ψi running from 1 to m are precisely the characters of Irr(G)\{χ} that
are not dominated by χ, so by Lemma 3.2 they are exactly the characters in Irr(G)\{χ}
which do not have V in their kernels. Thus

m∑
i=1

ψi(1)2 = |G| − χ(1)2 − |G : V | = d(d+ e)− d2 − |G : V | = de− |G : V | .

Replacing
m∑
i=1

ψi(1)2 by de− |G : V | in equation (5) gives the result

d3 ≤ (de− |G : V |)2 .
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Corollary 3.4. If d ≥ e2 then every element of Irr(G) \ {χ} is dominated by χ.

Proof. Suppose that at least one element of Irr(G) \ {χ} is not dominated by χ. By
Theorem 3.3, we have d3 ≤ (de − |G : V |)2. In particular, as |G : V | ≥ 1, we have
d3 < (de)2 = d2e2 so d < e2. As we are assuming that d ≥ e2, we must have that every
element of Irr(G) \ {χ} is dominated by χ.

4 All Characters Dominated

In this section, we will discuss the case where χ dominates all the other irreducible
characters of G. As in Section 3, we will write V = V(χ).

Lemma 4.1. If χ ∈ Irr(G) dominates all the elements of Irr(G) \ {χ} and d > e then
V is the unique minimal normal subgroup of G and V has order (d/e) + 1. Also, G
acts transitively on the non-principal irreducible characters of V and V is an elementary
abelian p-group for some prime p.

Proof. First note that V > 1 since if V = 1, then χ is 0 on all non-identity elements

of G, making [χ, 1G] =
1

|G|
χ(1) 6= 0 and contradicting that χ 6= 1G. Hence V is a

non-trivial normal subgroup of G. Also, by Lemma 3.2 we know V is contained in the
kernel of every irreducible character that is dominated by χ. Thus V is contained in
the kernel of every irreducible character except χ, which has trivial kernel by Lemma
2.1. Every non-trivial normal subgroup N is an intersection of non-trivial kernels of
irreducible characters, which all contain V . This means that V is contained in every
non-trivial normal subgroup of G and thus must be the unique minimal normal subgroup
of G. Also, |G : V | is the sum of the squares of the irreducible characters of G with V in

their kernels. Thus |G : V | =
∑
ψ 6=χ

ψ(1)2 = |G| −χ(1)2 = d(d+ e)− d2 = de. Rearranging

terms, we find

|V | = |G|
de

=
d(d+ e)

de
=
d

e
+ 1 ,

as wanted.
To show that V is abelian, we will show that all irreducible characters of V have degree

1. Let θ ∈ Irr(V ) with θ 6= 1V . If ψ ∈ Irr(G) \ {χ} then by assumption V ⊆ ker(ψ)
so 0 = [ψV , θ] = [ψ, θG]. Thus the only possible irreducible constituent of θG is χ, so
0 6= [θG, χ] = [θ, χV ]. Hence every non-principal irreducible character of V is a constituent
of χV . The constituents of χV form an orbit under the natural action of G on Irr(V ) so G
acts transitively on Irr(V ) \ {1V }. Also, the irreducible constituents of χV must all have
the same degree, say f . As every non-principal irreducible character of V has degree f ,
we can write |V | = 1 + nf 2 where n = |Irr(V ) \ {1V }|. But f must divide |V | and yet
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|V | ≡ 1 (mod f) so f = 1. Thus every character of V has degree 1 and V is abelian. In
particular, since V is an abelian minimal normal subgroup of G, we see that V must be
an elementary abelian p-group for some prime p.

To complete our analysis of this situation, we appeal to a theorem of Gagola. Although
Gagola’s original proof (see Theorem 6.2 in [1]) appeals to the classification of simple
groups, a proof given by Isaacs in [3] does not require the classification. We state, but
do not prove, the theorem here.

Theorem 4.2 (Gagola). Let N C G, and assume that the natural action of G on the
non-principal irreducible characters of N is transitive. Let θ be a non-principal character
of N , and assume that θ is fully ramified in its stabilizer T in G. Then N is a p-group
for some prime p, and T ∈ Sylp(G). Also, if T > N , then Op(G) = CG(N) > N , and
|T : N | > |N |.

Theorem 4.3. Assume χ ∈ Irr(G) dominates all the characters in Irr(G) \ {χ} and that
d > e > 1. Then e and (d/e)+1 must be powers of the same prime p, and (d/e)+1 < e2.

Proof. As usual, let V = V(χ). By Lemma 4.1, we know that V is the unique minimal
normal subgroup of G. Furthermore, V is abelian and has order (d/e) + 1. Also, the
natural action of G on the non-principal irreducible characters of V is transitive. Let
λ ∈ Irr(V ) be non-principal. Let T be the stabilizer of λ in G. As V is contained in the
kernel of the action, we have a transitive action of G/V on Irr(V )\{1V } and the stabilizer
of λ is T/V . Since |Irr(V ) \ {1V }| = |V | − 1 = (d/e), the Orbit-Stabilizer Theorem tells
us that

|T/V | = |G/V |
d/e

=
de

d/e
= e2 .

For all ψ ∈ Irr(G) \ {χ} we have V ⊆ ker(ψ), so λ is not a constituent of ψV as λ is
non-principal. It follows that χ is the only irreducible constituent of λG. By Clifford’s
Theorem, λT has only one irreducible constituent and we have that λ is fully ramified
in T . The conditions of Gagola’s Theorem are therefore satisfied and we conclude that
T ∈ Sylp(G) for some prime p. As |T | = |T/V ||V | = e2((d/e) + 1), we know that e and
(d/e) + 1 are powers of p. Finally, since |T : V | = e2 > 1, we have T > V and Gagola’s
Theorem gives us that |V | < |T : V |, so (d/e) + 1 < e2.

We now state our first main result, which was stated previously in a similar form as
Theorem A.

Corollary 4.4. For e > 1 we have the following bounds on d and |G| in terms of e.

(a) If e is not a prime power then d < e2 and |G| < e4 + e3.

(b) If e is a prime power then d < e3 − e and |G| < e6 − e4.

(c) If e is prime then d < e2 and |G| < e4 + e3.
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Proof. Suppose d ≥ e2. Corollary 3.4 tells us that every irreducible character other than
χ is dominated by χ. As e > 1, we have d ≥ e2 > e so the hypotheses of Theorem 4.3
are satisfied. One conclusion of this theorem is that e must be a prime power. If e is not
a prime power, then this is a contradiction, so we must have d < e2. This gives us the
bound for d in part (a).

We can now assume that e is a prime power. Another conclusion of Theorem 4.3 is
that (d/e) + 1 < e2 and both (d/e) + 1 and e are powers of the same prime. Solving
the inequality for d yields d < e3 − e which is the bound in part (b). In the case where
e is prime, we have that (d/e) + 1 is a power of e so the inequality (d/e) + 1 < e2 can
be sharpened to (d/e) + 1 ≤ e. Solving for d we get d ≤ e(e − 1). This contradicts our
original assumption that d ≥ e2. Hence if e is prime we must have d < e2 which is the
bound in part (c).

The bounds on the order of G follow immediately by plugging in the bounds obtained
for d into |G| = d(d+ e).

We can actually slightly improve on the bound in part (b) of Corollary 4.4. As
(d/e) + 1 < e2 and both sides of this inequality are integers, we can sharpen this to
(d/e) + 1 ≤ e2 − 1. Solving for d gives d ≤ e3 − 2e and the resulting bound on |G| is
|G| = d(d+ e) ≤ e6− 3e4 + 2e2. This bound, although less elegant than the bound given
in Corollary 4.4, may be more useful when dealing with specific examples.

5 The Solvable Case

In this section, we concentrate on groups G which have a non-trivial abelian normal
subgroup. In particular, we will see that this assumption allows us to obtain a better
bound on d in terms of e. As in the previous section, we write V for V(χ).

Lemma 5.1. If d ≥ e(e − 1) then every non-trivial normal subgroup of G has order at
least e.

Proof. If e = 2 then the statement of the lemma certainly holds, so we may assume e > 2.
If 1 < N < G and N C G then we know that e < e(e − 1) ≤ d and |G : N | ≤ ed since
|G| = d2 + ed and χ is faithful by Lemma 2.1. Hence |G| = |G : N ||N | ≤ ed|N |. Since

|G| = d(d+ e), we see that d(d+ e) ≤ ed|N | and thus
d

e
+ 1 ≤ |N |. As d ≥ e(e− 1), we

see that |N | = d

e
+ 1 ≥ e(e− 1)

e
+ 1, and hence |N | ≥ e.

Theorem 5.2. Suppose G has a non-trivial abelian normal subgroup N , and assume that
e ≥ 2 and d ≥ e(e− 1). Then |G : V | ≥ d and χ dominates all irreducible characters of
G other than χ.

Proof. Let |N | = q and write χN =
d

t

t∑
i=1

λi, where the λi are G-conjugate. Since t is

an orbit size on Irr(N), we know that t ≤ q. In fact, we must have t < q since 1N is in
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its own orbit under the action of G. Setting λ = λ1, we write T for the stabilizer of λ
in G and η ∈ Irr(T ) for the Clifford correspondent of χ and λ. Since ηG = χ, we have
|G : T |η(1) = d and therefore η(1) = d/t. As η(1) is a character degree, we conclude
that t must divide d. By Ito’s theorem applied to T , we know η(1) divides |T : N |.
Moreover, as ηN = η(1)λ, we have |T : N | = λG(1) ≥ η(1)2. We can therefore write
|T : N | = η(1)(η(1) + e1) where e1 is an integer and e1 ≥ 0.

We wish to determine e1. Since d(d+ e) = |G| and |G| = |G : T ||T : N ||N |, we have

that d(d+e) = t

(
d

t

)(
d

t
+ e1

)
q. Simplifying this expression yields d+e =

(
d

t
+ e1

)
q,

or equivalently,

d
(

1− q

t

)
+ e = qe1 . (6)

Since t < q, the quantity (q/t) > 1 and thus (1− (q/t)) < 0. Hence d (1− (q/t)) + e < e,
and substituting this in to equation (6) gives us that qe1 < e. As q = |N | we know that
q is not zero and by Lemma 5.1 we know that q ≥ e. Hence e1 < e/q < 1. We conclude
that e1 = 0, giving us that |T : N | = (d/t)2 and we are in the fully ramified situation.

That is, λT =
d

t
η, and as λG = (λT )G, we have λG =

(
d

t
η

)G
=
d

t
χ. Since N C G, we

conclude that (d/t)χ(g) = λG(g) = 0 if g /∈ N , and we see that χ vanishes off of N . This
gives us that V ⊆ N so V is an abelian normal subgroup of G.

As V is abelian, we know by Ito’s theorem that d divides |G : V |. In particular,
|G : V | ≥ d. We claim that this forces all ψ ∈ Irr(G) \ {χ} to be dominated by χ.
Otherwise, applying the inequality of Theorem 3.3 yields

d3 ≤ (de− |G : V |)2 ≤ (de− d)2 = d2(e− 1)2 .

If we cancel d2 from both sides of this inequality, we then have d ≤ (e−1)2, which would
contradict our hypothesis that d ≥ e(e− 1) as (e− 1)2 < e(e− 1) when e ≥ 2.

We may now derive our second main result, Theorem B, which we state again here
for the convenience of the reader.

Corollary 5.3. Suppose G has a non-trivial abelian normal subgroup N .

(a) If e is prime then d ≤ e(e− 1) and |G| ≤ e4 − e3.

(b) If e is divisible by two distinct primes then d < e(e− 1) and |G| < e4 − e3.

Proof. If d ≥ e(e − 1) then Theorem 5.2 ensures that χ dominates all characters of
Irr(G) \ {χ}. By Theorem 4.3, we know that e must be a prime power, so this gives us a
contradiction if e is divisible by two distinct primes. Hence if we are in the situation of
(b) then we must have d < e(e− 1), implying that |G| < e4 − e3.

We may therefore assume that e is a prime power. Specifically, if e is prime then
Corollary 4.4 gives us that d < e2. Therefore if d > e(e− 1) we have e(e− 1) < d < e2.
As Theorem 4.3 ensures that e divides d, we have a contradiction in this case. Thus we
must have d ≤ e(e− 1) if e is prime, and |G| ≤ e4 − e3.
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Note that as we do not have the bound d < e2 when e is a prime power that is
not prime, the methods of this section do not help to improve the bound of d < e3 − e
obtained in Corollary 4.4. Recall that for e = pa with a > 0 and p prime we know of a
class of examples of groups which have an irreducible character of degree d = e(e − 1).
This example is discussed in detain in Isaacs’ paper (see the introduction of [3]), and
shows that the bound d ≤ e(e − 1) of Corollary 5.3(a) is sharp. When e is divisible
by two or more distinct primes, we know of no such family of examples, so it would be
interesting to obtain a better feel for a bound on d in this case.

Note that Corollary 5.3 certainly applies when the group G is solvable, so we have the
bound |G| ≤ e4− e3 for G solvable and e either prime or divisible by two distinct primes.
Moreover, if we assume that e is either prime or divisible by two distinct primes and that
d > e(e− 1), then we can conclude that G has no non-trivial solvable normal subgroups,
since any such normal subgroup would have a non-trivial characteristic abelian subgroup.

6 Small e values

In this section we show how our work can be applied in practice. With the results of this
paper in hand, it is possible to determine all possible groups that occur having relatively
small e values. Snyder classified all groups with e = 2 and e = 3 in [4], and with our
results it is possible to fully classify groups with e values of 4, 5, and 6. We can also
classify all possible d values which can occur with e = 7.

In the cases of e = 5 and e = 6, we use Corollary 4.4 to see that any groups hav-
ing these e values must have orders less than 750 and 1512, respectively. In any case,
computer software such as MAGMA can perform an extensive search to count all such
non-isomorphic groups with these e values.

When e = 5, we find a total of 10 non-isomorphic groups having |G| = d(d+5). More
specifically, we have one abelian group of order 6 with d = 1 and one group where d = 2,
yielding a group of order 14. There are three non-isomorphic groups of order 24 having
an irreducible character of degree 3 and we have two non-isomorphic groups of order 36
with a character of degree 4. Finally, we have three distinct groups of order 500 which
have a character of degree 20, one of which is the example given by Isaacs in his paper.
This fully classifies all groups with |G| = d(d+ 5) where d = χ(1) for some χ ∈ Irr(G).

When e = 6, we determine that there are 18 distinct groups of order d(d + 6). Also,
we find here that the largest d can be is 6, and we are lacking in an example where d
is somewhat large in comparison to e. A more specific breakdown of the examples is as
follows. When d = 1 we have |G| = 1(1 + 6) and G is the unique group of order 7. For
d = 2 we find nine groups of order 16 having a character of degree 2. We have two groups
of order 27 with a character of degree 3 and two groups of order 40 having an irreducible
character of degree 4. There is a unique group of order 55 with a character of degree 5.
When d = 6, we have three non-isomorphic groups of order 72, and this is the largest d
value possible for e = 6.
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The case of e = 4 is somewhat more complicated as our techniques are less effective
for prime powers which are not prime. However, it is still feasible to finish this case by
hand.

Theorem 6.1. There are 17 non-isomorphic groups G having order d(d + 4) for d the
degree of an irreducible character of G.

Proof. When e = 4, Corollary 3.4 tells us that if d ≥ 16 then χ dominates all characters
in Irr(G) \ {χ}. Applying Lemma 4.1 then tells us that G has a unique minimal normal
subgroup N with order (d/4) + 1 and this subgroup satisfies the hypotheses of Gagola’s
Theorem. For λ ∈ Irr(N) \ {1N}, write T for the inertia subgroup of λ. By Gagola’s
Theorem, we know |G : N | = 4d and |G : T | = d/4, making |T : N | = 16. Furthermore,
we know that T is a Sylow p-subgroup of G and since 2 divides |T | we must have
T ∈ Syl2(G). Finally, we know that |N | < |T : N | so we must have |N | ∈ {2, 4, 8}. As
we are assuming that d ≥ 16, however, we see that |N | = (d/4) + 1 ≥ 4 + 1 = 5. We may
therefore assume that |N | = 8, so that d = 28 and |G| = 896, which is a case that can be
handled by MAGMA. A search of the Small Groups database for MAGMA shows that
no group of order 896 has a character of degree 28. We can therefore assume that d < 16
and a search of the same database gives us the count of 17 non-isomorphic groups having
e = 4. We find that the possible d values for e = 4 are d = 1, 2, 3, 4, and 12. The number
of non-isomorphic groups having these d values are 1, 2, 1, 7, and 6, respectively.

In the case of e = 7, we must check all possible orders of groups having d < 49. This
means we must check all such groups having order less than 2640. Again, we rely on
software such as MAGMA to classify all groups up to order 2000 having this e value, and
we use ad hoc methods to eliminate other possibilities. For e = 7 the computer can check
for groups satisfying |G| = d(d + 7) up to and including d = 41. This search gives 10
non-isomorphic groups with d values less than 42. The d values that occur are 1, 2, 5, 6, 8,
and 9, and the number of non-isomorphic groups for these d values are 3, 3, 1, 1, 1, and
1, respectively. When d = 42, we see that 42 = 7 · 6 = e(e− 1), so we know that there is
at least one group of order 2058 possessing an irreducible character of degree 42.

We can use the methods of the previous section to show that there are no groups with
|G| = d(d + 7) and 43 ≤ d ≤ 47. Since e = 7 is prime, we can apply Corollary 5.3 to
conclude that if d ≥ 43 then G cannot have any non-trivial abelian normal subgroups. In
particular, G can have no normal Sylow p-subgroups for any prime p dividing |G| since
any such normal subgroup would have a non-trivial center, which would then be normal
in G. For d ∈ {43, 44, 45, 46, 47}, we find that groups with |G| = d(d + 7) have normal
Sylow 43,17,13,53, and 47 subgroups, respectively, so none of these situations can occur.
The final case, where d = 48, is slightly more complicated, so we include a more detailed
argument.

Lemma 6.2. There is no group G of order 2640 having an irreducible character of degree
48.
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Proof. Since |G| = 2640 = 24 · 3 · 5 · 11, we know by the Sylow counting Theorem that G
has either a normal Sylow 11-subgroup or G has 12 Sylow 11-subgroups. As previously
noted, because 7 is prime and |G| > 2050 = 74 − 73, we conclude that G cannot have
a normal Sylow 11-subgroup by Corollary 5.3. We may therefore assume that G has
12 Sylow-11 subgroups. Let N = NG(P ) for P ∈ Syl11(G), so that |G : N | = 12 and
|N | = 220 = 22 · 5 · 11. Consider the action of G on the 12 cosets of N . The kernel
of this action is K = coreG(N). As K C G, there cannot be any non-trivial abelian
characteristic subgroups of K as these would be abelian normal subgroups of G. If 11
divides |K| then P ⊆ K would be a non-trivial abelian characteristic subgroup of K. We
can therefore assume that 11 does not divide |K| so that |K| ∈ {1, 2, 4, 5, 10, 20}. Any
such K is necessarily solvable and thus if K > 1 we know that K contains a non-trivial
abelian characteristic subgroup. We must therefore have K = 1 so that G injects into
S12. If we write C = CG(P ), we can apply the “N/C Theorem” to conclude that N/C
is isomorphic to a subgroup of the automorphism group of P . As |Aut(P )| = 10, we see
that 2 must divide |C|. Hence there is an element of order 2 commuting with all of P
and we see that G has an element of order 22. However, S12 does not have an element of
order 22 and as G injects into S12, we have reached a contradiction.
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