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ABSTRACT. Conjecturally, almost all graphs are determined by their spectra. This problem has
also been studied for variants such as the spectra of the Laplacian and signless Laplacian. Here
we consider the problem of determining graphs with Ihara and Bartholdi zeta functions, which
are also computable in polynomial time. These zeta functions are geometrically motivated, but
can be viewed as certain generalizations of characteristic polynomials. After discussing some
graph properties determined by zeta functions, we show that large classes of cospectral graphs
can be distinguished with zeta functions and enumerate graphs distinguished by zeta functions
on ≤ 11 vertices. This leads us to conjecture that almost all graphs which are not determined by
their spectrum are determined by zeta functions.

Along the way, we make some observations about the usual types of spectra and disprove a
conjecture of Setyadi and Storm about Ihara zeta functions determining degree sequences.

1. INTRODUCTION

A fundamental problem in spectral graph theory is: when can we distinguish (unlabeled
simple) graphs by their spectra? If the answer were always, as was once conjectured, that
would mean we could solve the graph isomorphism problem in polynomial time. However,
many pairs of non-isomorphic cospectral graphs have since been found, and various construc-
tions of cospectral pairs are known. Nevertheless, Haemers conjectured that almost all graphs
are determined by their spectra (DS), i.e., the fraction of graphs of order n which are DS goes to
1 as n→∞. In fact, from the numerical data for n ≤ 11 in Haemers–Spence [HS04], it appears
that more graphs are determined by their Laplacian spectra (L-DS), and even more by their
signless Laplacian spectra (|L|-DS). We refer to surveys by van Dam and Haemers for more
details [vDH03], [vDH09].

This question of which graphs are DS can be thought of geometrically. Knowing the adja-
cency spectrum of G is equivalent to knowing what one might call the walk length spectrum of
G—the set {(`, wG(`)) : ` ≥ 0}, where wG(`) is the number of closed walks of length ` on G—
together with the order n of G. Hence the above question can be stated: when do the order and
walk length spectrum determine G?

From the point of view of Riemannian geometry and covering space theory, it is more natural
to look at geodesics on G rather than arbitrary walks. Roughly, geodesics are paths with no
backtracking and they correspond to lines in the universal cover of G (see Section 2). The
geodesic length spectrum of G is then the set {(`, aG(`)) : ` ≥ 0} of numbers of (primitive) closed
geodesics of length ` for all `. For graphs, the Ihara zeta function ZG(t) of G encodes the
geodesic length spectrum, and knowing one is equivalent to knowing the other.
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This is entirely analogous to the Selberg zeta function encoding the (geodesic) length spec-
trum for Riemann surfaces. For compact Riemann surfaces, Huber’s theorem says that know-
ing the Selberg zeta function, i.e., the length spectrum, is equivalent to knowing the spectrum
of the Laplacian (see, e.g., [Bus10]). Similarly, for connected regular graphs, knowing the Ihara
zeta function is equivalent to knowing the (adjacency or Laplacian) spectrum (see Section 2.1).
However, this is not the case for irregular graphs (cf. Table 5.2).

Here, we suggest that the Ihara zeta function—which is computable in polynomial time—
provides a more effective way to differentiate (irregular) graphs than the usual spectra studied
(Conjecture 5.1). One heuristic for why this should be the case is that geodesics capture much
of the geometry of the graph better than arbitrary paths. Another is that the Ihara zeta function
typically encodes more information—at least for md2 graphs (graphs with no vertices of degree
≤ 1), the reciprocal of the Ihara zeta function is a polynomial whose degree is twice the number
of edges, and thus typically has more coefficients than the characteristic polynomial.

The obvious drawback of the Ihara zeta function is that it cannot detect leaves or isolated
nodes. For this reason (at least in part), most studies of the Ihara zeta function restrict to md2
graphs. Most studies also restrict to connected graphs, which is convenient to discuss covering
space theory, but this is less crucial for the problem of distinguishing graphs. (As with charac-
teristic polynomials, the zeta function of a disconnected graph is the product of the zeta func-
tions of its components.) Instead of making such restrictions here, we consider four methods
of addressing this defect to distinguish graphs (undefined notation explained subsequently):

(M1) Use the order and the Ihara zeta ZG∗(t) function of the cone G∗ of G. Equivalently use
the order and the characteristic polynomial ϕT ∗(λ) = det(λI − T ∗).

(M2) Use the order, size and the Ihara zeta functionsZG(t) andZḠ(t) ofG and its complement
Ḡ. Equivalently, use the order and the characteristic polynomials ϕT (λ) = det(λI − T )
and ϕT̄ (λ) = det(λI − T̄ ).

(M3) Use the order and the Bartholdi zeta function ZG(t, u) of G. Equivalently, use the gen-
eralized characteristic polynomial ϕAD(λ, x) = det(λI −A+ xD).

(M4) Use the order and the Bartholdi zeta functions ZG(t, u) and ZḠ(t, u) of G and Ḡ. Equiv-
alently, use the generalized characteristic polynomial ϕADJ(λ, x, y) = det(λI−A+xD+
yJ).

Here I and J denote the identity and all-ones matrices of the appropriate sizes, and A and
D denote the adjacency and degree matrices for a fixed ordering of vertices on G. Further, T
(resp. T ∗, T̄ ) denotes Hashimoto’s oriented edge matrix (see Section 2) of G (resp. G∗, Ḡ)—
whose spectrum contains the same information as ZG together with the size of G (cf. (2.3)).
The two-variable Bartholdi zeta function ZG(t, u) is a generalization of the one-variable Ihara
function ZG(t) : C → C which counts “closed geodesics with r backtracks”—see Section 3, in
particular Equation (3.3) for the relation with ϕAD.

Note that knowing ϕAD implies knowing the spectra of A, the Laplacian L, and the signless
Laplacian |L|. Similarly knowing ϕADJ implies knowing all of these spectra for both G and Ḡ.

We will explain the precise motivation behind these choices as we consider each in turn in
the body of the paper. The basic ideas are that the Ihara zeta function cannot detect “dangling
edges,” i.e., edges to a degree 1 node, but (i) taking cones or complements turns degree 1 nodes
into higher degree nodes and (ii) the Bartholdi zeta function does detect dangling edges. In
analogy with the DS terminology, we say that a graph G is DZ* (resp. DZZ̄, DZ , DZZ̄) if it is
uniquely determined by method (M1) (resp. (M2), (M3), (M4)).

We will see in Section 3.2 that (M4) is provably stronger than each of (M1), (M2) and (M3),
i.e., being DZ* (resp. DZZ̄, DZ) implies DZZ̄ . However there are no obvious implications
among (M1), (M2) and (M3) (but there are some indications that (M2) may be stronger than
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(M1)—see the end of Section 5). Nevertheless, a surprising outcome of our calculations in
Table 5.1 is that for graphs on n ≤ 11 vertices, methods (M1), (M2) and (M4) are always equiv-
alent (whereas (M3) has slightly less discriminating power). This suggests one gains little by
using the Bartholdi zeta function, and one is in practice justified in just considering the Ihara
zeta function, which is both conceptually and computationally simpler. However, all of these
methods run in polynomial time.

Now we outline the contents of the paper.
In Section 2, we first recall basic facts about the Ihara zeta function, and discuss some graph

properties it determines. Then we consider some basic properties determined by methods (M1)
and (M2). In particular, these zeta invariants force strong restrictions on the degree sequence
of a graph. Setyadi–Storm [SS13], in their enumeration of pairs of connected md2 graphs with
the same Ihara zeta function on n ≤ 11 vertices, found that the Ihara zeta function of a con-
nected md2 graph determines the degree sequence for n ≤ 11, and conjectured this holds for
all n, but we give a counterexample to this conjecture on 12 vertices (Example 2.2). Neverthe-
less, we show that knowing the zeta functions of sufficiently many cones of G algorithmically
determines the degree sequence (Lemma 2.3).

In Section 3, we recall basic facts about the Bartholdi zeta function and discuss the relative
strengths of methods (M1)–(M4). To show that (M4) is stronger than (M1), we show that two
graphs have the same spectra with respect to A+ xD and Ā+ xD̄ for fixed x, if and only if the
same is true of their joins with another graph (Theorem 3.2). In particular, two graphs have the
sameA- and Ā- (or |L|- and |L|-) spectra if and only if the same is true for their cones (Corollary
3.3; cf. Table 5.4 for related data).

In Section 4, we show that methods (M1)–(M4) distinguish a large class of cospectral and
Laplacian cospectral pairs coming from well known constructions: GM switching, coalescence
and join. On the other hand, these methods will not distinguish graphs arising from the more
restrictive GM* switching. Section 4.4 presents a new construction of pairs of graphs which can-
not be distinguished by these methods. This construction is interesting because it constructs
graphs G1, G2 such that the generalized adjacency matrices A1 + xD1 and A2 + xD2 are mirac-
ulously conjugate for all x but not “uniformly conjugate” (as happens in GM* switching) i.e.,
there is no invertible matrix P such that P (A2 + xD2)P−1 = A1 + xD1 for all x.

In Section 5, we enumerate all graphs on ≤ 11 vertices which are not DZ* (resp. DZZ̄, DZ ,
DZZ̄) in Table 5.1. We state Conjecture 5.1, which asserts almost all graphs are DZ* (resp. DZZ̄,
DZ , DZZ̄), and further that almost all non-DS graphs are DZ* (resp. DZZ̄, DZ , DZZ̄). Table 5.2
indicates that there is no essential difference in just using the Ihara zeta function ZG compared
to methods (M1)–(M4) when restricting to md2 graphs. This suggests Conjecture 5.2, which is
the analogue of Conjecture 5.1 for determining md2 graphs G using only ZG. We also compare
the effectiveness of combining different kinds of spectra for n ≤ 11 in Table 5.3. In particular,
this suggests that using two of the usual spectra, such as A and L or A and |L|, is much more
effective at distinguishing graphs than any single one.

Our calculations were done using Sage [Sage], including nauty [nauty], and standard Unix
tools. In practice, we found that to check if two graphs have the same zeta function, it almost al-
ways sufficed to compute the two numbers det |L| and det(4D+2A−3I), which are essentially
(the residue of) ZG(1) and ZG(−2). For convenience of the interested reader, when mention-
ing particular examples of graphs, we include (non-canonical) graph6 strings to specify the
graphs, which can be used to easily reconstruct the graphs in Sage.

As a final remark, we note that there are more general notions of zeta functions of graphs,
such as path and edge zeta functions (see [ST96] or [Ter11]). We do not consider these here.

We thank C. Storm for discussions about [SS13], as well as the referee for helpful comments.
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2. THE IHARA ZETA FUNCTION

We begin by defining closed geodesics and the Ihara zeta function. This notion of a geodesic
on a graph corresponds to a bi-infinite simple path in the universal cover, but we do not explain
this here—see, e.g., [ST96] or [Ter11]. Ihara zeta functions are a special case of more general zeta
functions of multigraphs considered by Hashimoto [Has89], generalizing the zeta functions
originally defined by Ihara [Iha66].

Fix a finite (simple) graph G = (V,E). Let n = |V | and m = |E|. We will denote walks
by sequences of adjacent oriented (or directed) edges ei. For an oriented edge ei = (u, v), let
e−1
i = (v, u) be the edge with reversed orientation. Suppose γ = (e1, e2, . . . , e`) denotes a closed

walk of length ` in G. We say γ is a closed geodesic if ei 6= e−1
i+1 for 1 ≤ i < ` and e1 6= e−1

` . The
former condition is often expressed saying γ has no backtracking and the latter that γ has no
tails. Write kγ for the concatenation of k copies of γ. We say γ is primitive if γ is not of the form
kδ for a closed geodesic δ and some k ≥ 2.

Let σ(γ) = (e2, . . . , e`, e1). Then σ(γ) is also a closed geodesic of length `, and it is primitive if
γ is. Thus the cyclic group 〈σ〉 of order ` generated by σ acts on all (primitive) closed geodesics
of length `. The 〈σ〉-orbits thus partition the set of (primitive) closed geodesics of length ` into
equivalence classes. Let a(`) = aG(`) denote the number of primitive closed geodesics of length
` up to equivalence.

Note that, asG is simple, there are no closed geodesics of length< 3. The closed geodesics of
length 3, 4 or 5 are just the cycles of length 3, 4 or 5. The closed geodesics of length 6 are just the
cycles of length 6 together with the concatenations of 2 simple cycles of length 3 starting at a
fixed base point. If there are two distinct cycles based at a vertex v0, going around the first cycle
k times and going around the second cycle once or more is a primitive closed geodesic. Hence,
for connected md2 graphs, the lengths of primitive closed geodesics are unbounded unless G
is a circuit.

The (Ihara) zeta function of G is

(2.1) ZG(t) =
∏
γ

(1− t`(γ))−1 =
∏
`>2

(1− t`)−a(`) = exp

∑
`>2

∑
k≥1

a(`)
t`k

k

 ,

where, in the first product, γ runs over a set of representatives for the equivalences classes of
primitive closed geodesics, and `(γ) denotes the length of γ. Since no closed geodesics will
involve degree 0 or degree 1 nodes, ZG(t) = ZG†(t), where G† is the “pruned graph” obtained
by successively deleting degree 0 and degree 1 nodes until one is either left with an md2 graph
or the null graph (the graph on 0 vertices).

Note if G is a disjoint union of two subgraphs, G = G1 t G2, then aG(`) = aG1(`) + aG2(`).
Hence the zeta function of a graph is the product of the zeta functions of its connected compo-
nents.

The zeta function is a priori an infinite product, but turns out to be a rational function and
thus is meromorphic on C. Namely, Hashimoto [Has89], [Has92] and Bass [Bas92] gave two de-
terminant formulas for ZG, which have been subsequently retreated many times (e.g., [ST96]).
The Bass determinant formula [Bas92] is

(2.2) ZG(t) = (1− t2)n−m det(I − tA+ t2(D − I))−1.

Note the right hand side is invariant under adding nodes of degree 0 or 1 to G.
Let {e1, . . . , e2m} denote the set of oriented edges of G. The oriented edge matrix (with respect

to this ordering of oriented edges) T is the 2m× 2m matrix whose (i, j)-entry is 1 if ei = (u, v),
ej = (v, w) and u 6= w; or 0 otherwise. The Hashimoto determinant formula [Has89], [Has92]
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(cf. [ST96, Thm 3]) is

(2.3) ZG(t) = det(I − tT )−1 = (t2mϕT (t−1))−1,

where ϕT (λ) = det(λI − T ) is the characteristic polynomial of T . Again, one can check that
det(I − tT ) is invariant under adding degree 0 or 1 nodes to G.

Since G† 6= G in general, ZG does not determine m (or n). This means knowing ZG is not
exactly the same as knowing the spectrum of T , but it almost is: ϕT determines both ZG and m,
and conversely. Indeed, the degree of ϕT is 2m, so one can recover ZG from ϕT . The converse
is obvious. This observation relates to method (M2).

2.1. Properties determined by the Ihara zeta function. Here we summarize some elementary
graph properties determined by the Ihara zeta function. This question has previously been
considered mainly for md2 and connected md2 multigraphs (e.g., [Cza05] and [Coo09]).

First, examining the coefficients of tk in the logarithm of (2.1) shows ZG determines a(`)
for all `, hence knowing ZG is the same as knowing the primitive geodesic length spectrum.
Note that the number of non-primitive geodesics of a given length l is the sum of the numbers
of primitive geodesics of proper divisors of l. Hence the primitive geodesic length spectrum
determines the full geodesic length spectrum and vice versa. Consequently ZG determines the
number of cycles of length 3, length 4 and length 5 in G. It is not true that ZG determines the
number of cycles of length 6.

Example 2.1. The pair of graphs HheadXZ and Hhf@eS| pictured below, each with 9 vertices and 18
edges, have the same zeta functions but a different number of cycles of length 6 (46 and 50).
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We remark ZG(t) = 1 if and only if G has no cycles, so ZG can determine whether a graph is
a forest or not. The girth g of G will be the smallest ` such that a(`) 6= 0. So ZG determines g
and, if G is connected, Scott and Storm [SS08] showed ZG determines the number of cycles of
length ` for any ` < 2g.

From (2.3) it is clear that ZG(t)−1 is a polynomial in t of degree 2m†, where m† is the size of
G†. In general, though ZG does not determine m or n, it does determine m = m† if G is md2.
If we assume that G is connected (but not necessarily md2), then we can say ZG determines
m − n. Namely, if ZG(t) = 1 then G is a tree and m − n = −1. Otherwise G† is not the null
graph som−n = m†−n†, andm† and n† are determined by ZG, as we will see below. Note that
ZG does not determine m − n if we drop the assumption that G is connected, since all forests
have trivial zeta function.

To get clean statements, for the rest of this section assume G is md2 and connected. For
general connected G, the results here can be viewed as results about G† when G† is not the null
graph. Note that if G is connected, then G† is also connected.

In this case m ≥ n, and Hashimoto [Has89] showed (i) ZG(t) has a pole at t = 1, which is
of order 2 = m − n + 2 if G is a circuit and m − n + 1 otherwise, and (ii) ZG(t) has a pole at
t = −1 of order m − n, m − n + 1 or m − n + 2 according to whether G is non-bipartite, a
bipartite non-circuit or a bipartite circuit. Hashimoto [Has90] later showed the residue at t = 1
for non-circuits is 2m−n+1(n − m)κ(G), where κ denotes complexity of G, i.e., the number of
spanning trees of G. Note that G is bipartite if and only if its geodesics all have even length,
and recall G is a circuit if and only if a(`) = 0 for ` sufficiently large.
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Consequently, ZG determines n, m, κ(G), whether G is bipartite, and whether G is a circuit.
In fact, since det(I − tA + t2(D − I)) is simply det(D + A) = det |L| at t = −1, (2.2) tells us
limt→−1(1− t2)n−mZG(t)−1 = det |L|, which is 0 if and only if G has a bipartite component. So
ZG(t) also determines the product of eigenvalues of |L|.

Cooper [Coo09] also showed ZG determines whether G is regular, and if so, the degree of
regularity as well as the spectrum. In fact if G is (q + 1)-regular, then the spectrum conversely
determines ZG by

(2.4) ZG(t) = (1− t2)n−m
∏
i

(1− λit+ qt2)−1

where {λ1, . . . , λn} are the eigenvalues of A (attributed to A. Mellein [Cza05]).
Write V = {v1, . . . , vn}, di = deg(vi) and qi = di − 1. We see the leading term of ZG(t)−1 is

(
∏
qi)t

2m. Consequently, for G md2, ZG(t) determines
∏
qi. One also knows 2m =

∑
di, so

knowing ZG(t) places rather strong restrictions on the degree sequence for md2 graphs.
In fact, Setyadi–Storm [SS13], based on their enumeration of zeta functions of connected

md2 graphs on ≤ 11 vertices, conjectured that connected md2 graphs with the same Ihara zeta
function have identical degree sequences. However, we give a counterexample.

Example 2.2. The graphs K??CA?_FEcdk and K??CA?_ccWNk on 12 vertices and 16 edges drawn
below (“the crab and the squid”) have the same zeta function, but their degree sequences are (5, 5, 4, 2,
2, 2, 2, 2, 2, 2, 2, 2) and (7, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2).

.
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2.2. Zeta functions of cones—(M1). The most obvious issue of using zeta functions to distin-
guish arbitrary graphs is that no closed geodesics will pass through “dangling links,” i.e., paths
not contained in cycles. To resolve this issue, an obvious thing to try is connecting all the degree
1 nodes to a new vertex. However, doing this to just the degree 1 nodes is not a nice operation
on graphs (it is not injective), so it makes more sense to look at the cone G∗ of G. This is just the
join of G with a point: G∗ = G ∨ K1, where ∨ denotes the operation of graph join. The new
vertex in G∗ is denoted vn+1.

Clearly G∗ has order n+ 1 and increases the degree of each vertex in G by 1. That is, G∗ has
degree sequence (d∗i ) where d∗i = di+1 for 1 ≤ i ≤ n and d∗n+1 = n. Hence if G is an md1 graph
(a graph with no degree 0 vertices), then G∗ is an md2 graph. A graph H on n+ 1 vertices will
be the cone of some graph G if and only if there is a vertex of degree n, and G can be recovered
by deleting any vertex of degree n.

We propose to use ZG∗ to study G. Now any edge in G will appear in some closed geodesic
in G∗, so it is reasonable to expect that ZG∗ encodes much of the structure of G. Of course,
degree 0 nodes in G become degree 1 nodes in G∗ and still are not detected by ZG∗ . If one
wanted to, say, count the degree 0 nodes only using zeta functions, one could also look at the
zeta function of the double cone G∗∗ = G ∨K2. Instead, we will simply fix n, and see how to
determine the number of degree 0 nodes from n and ZG∗ .

Hence, for the rest of this section, we will assume we know the order n of G (except where
stated otherwise) and see what can be deduced about G from ZG∗ .

We first show that we can determine the number of degree 0 nodes from n and ZG∗ . Let G′

be the graph obtained from G by removing all degree 0 nodes. Note G is the empty graph on
n vertices if and only if ZG∗ = 1. Otherwise, (G∗)† = (G′)∗ and (G′)∗ is connected md2, so ZG∗
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determines the number of vertices and edges for (G′)∗ and hence also for G′. Combining this
with knowing n, we can determineG fromG′. Hence in considerations below we may and will
assume G = G′, i.e., G has no degree 0 nodes, thus G∗ is connected md2.

From the previous section, we immediately see ZG∗ determines the following: n, m,
∏
di,

and the number of triangles in G, which equals 1
2aG∗(3) − m. The latter follows as a 3-cycle

in G∗ corresponds to either a 3-cycle in G or a triangle formed from an edge in G with vn+1.
Similarly, aG∗(4) = aG(4) + 2

∑(
di
2

)
, since the latter term is the number of directed paths of

length 2 in G. In particular, ZG∗ determines aG(4) +
∑
d2
i . Also, one knows aG∗(5), which is

aG(5) plus the number of directed paths of length 3 in G.
An elementary consequence of knowing n, 2m =

∑
di and

∏
di is the following: if we fix a, b

and c and know that each vertex has degree a, b or c, then ZG∗ determines the degree sequence.
For generalG, we remark that one can determine the degree sequence by looking at sufficiently
many cones. Namely, let G∗(r) = G ∨Kr.

Lemma 2.3. LetG be a graph of possibly unknown order n ≥ 1. There exists a finite number r such that
ifH1, . . . ,Hr is any known sequence of graphs with distinct orders, thenZG∨H1 , . . . , ZG∨Hr determines
the degree sequence of G. One may take r to be at most the order of G (or 3 for G with order less than
3). In particular, ZG∗ , . . . , ZG∗(r) determines the degree sequence of G.

Proof. We will take r to be at least 3, in order to guarantee that one of the Hj has order at
least 2 (we allow one of the Hj ’s to be the null graph). We will assume that we know the
degree sequences of the Hj and describe how the degree sequence of G can be computed from
ZG∨H1 , . . . , ZG∨Hr .

Let H be one of the Hj ’s of order h ≥ 2. Then G ∨H is connected and if n ≥ 2 it is also md2.
It follows that the order of (G ∨ H)† is less than h + 2 if and only if n = 1. Otherwise it has
order h + n and, in either case, we can find n from ZG∨H . Assume from now on that n ≥ 2.
Then ZG∨H determines the number of edges of G∨H from which we can compute the number
of edges of G, which we will call m.

Let xi be the number of vertices of G of degree i for 0 ≤ i ≤ n − 1. From n and m we
have the two linear equations

∑n−1
i=0 xi = n and

∑n−1
i=0 ixi = 2m. Let hj be the order of Hj for

1 ≤ j ≤ r. First assume that each hj is at least 2 so G ∨Hj are all connected md2 graphs. Then
ZG∨Hj determines the products of the degrees of G ∨ Hj minus 1. The degrees coming from
vertices of Hj are known and hence ZG∨Hj will determine

∏n−1
i=0 (i+ hj − 1)xi , or equivalently,∑n−1

i=0 ln(i+hj−1)xi. Thus we have a linear system with r+2 equations and n unknowns. The
coefficient matrix A of this linear system has 1, i, ln(i+h1− 1), ln(i+h2− 1), ..., ln(i+hr− 1) as
the entries of its i-th column, for 0 ≤ i ≤ n−1. If c =

[
c1 c2 ... cr+2

]
is a vector with cA = 0,

then the function f(t) = c1 + c2t+ c3 ln(t+ h1 − 1) + c4 ln(t+ h2 − 1) + ...+ cr+2 ln(t+ hr − 1)
has zeros at 0, 1, 2, ..., n − 1. As the hj ’s are distinct, this function changes direction at most r
times and thus has at most r + 1 zeros unless all ci are zero. If we take r = n − 2 then the ci
must all be 0 so A is an invertible n × n matrix and the linear system has exactly one solution.
If we drop the assumption that the hj ’s are all at least 2, then at worst we can ignore ZG and
ZG∗ and take r = n. �

Remark 2.4. If we allow n ≥ 0 in the above proposition, the order of G can be determined using the
ZG∨Hj ’s, with one exception: if all the Hj ’s are empty graphs, then the ZG∨Hj will not distinguish
between the null graph and the graph on one vertex. Also, using fewer than n joins often suffices to
determine the degree sequence of G. For instance, the proof shows n− 2 works if all hj ’s are ≥ 2. It also
ignores the degree information gotten from ZG∗ if one of the Hj has order 1. If we also take into account
that the xi must be nonnegative integers, this could significantly decrease the number of joins needed in
many cases.
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We also comment that for regular graphs, knowing ZG∗ is equivalent to knowing the spec-
trum of G∗ [BS13].

2.3. Zeta functions of graphs and their complements—(M2). We begin by thinking of another
way to encode the dangling nodes or links in the zeta function. By a dangling node (link), we
mean a vertex (edge) not contained in any cycle, i.e., any node (edge) not in G†.

First note that if we fix n, we know the number n−n† of dangling nodes, sinceZG determines
the order n† of G†. In particular, n and ZG will tell us if G is connected md2.

Recall that knowing the spectrum of T gives slightly more information than just ZG—it also
tells us m. Since ZG tells us m†, knowing ϕT tell us m − m† which is the number dangling
links. However, this tells us nothing about the structure of dangling links—e.g., ϕT cannot
distinguish among a cycle Cn with leaves added, Cn with a path attached and Cn disjoint
union a forest, provided the number of edges match.

If we want to somehow account for dangling nodes with zeta functions, we can also try
looking at both G and Ḡ. Degree 0 and degree 1 vertices in G now have degree n− 1 and n− 2
in Ḡ, so for n > 3 they will now have degree at least 2. However, it is still possible that some of
these vertices are dangling nodes in Ḡ. Nevertheless, we can show the following.

Proposition 2.5. Let G be a graph of order n. Then at least one of the following holds:
(i) G is determined by ϕT and ϕT̄ (or equivalently, by ZG, ZḠ and m); or
(ii) for any vertex v ∈ V , we have v ∈ G† or v ∈ (Ḡ)†.

We remark this is not true if (i) is just replaced with “G is determined by ZG and ZḠ.” For
instance, let G1 = K3 t {v} and G2 be the graph obtained from G1 by adding an edge from
v to one vertex in K3. Then Ḡ1 is a tree and Ḡ2 is a forest, so ZG1 = ZG2 = ZK3 and ZḠ1

=
ZḠ2

= 1. Thus we cannot distinguish G1 and G2 by looking at their zeta functions and their
complements’ zeta functions. Moreover, v does not lie in G†i or (Ḡi)

† for i = 1, 2.
Before the proof, we give some numerical evidence that (M2)—using ϕT and ϕT̄ (or ZG, ZḠ

and m) to distinguish graphs of order n—is much better than just using ZG and ZḠ, or just ZG
or ϕT . This data is presented in Table 2.1. The second column is the total number of graphs
on n nodes. Subsequent columns contain the number of graphs G on n nodes which are not
determined respectively by ZG, by ZG and ZḠ, by ϕT , and by both ϕT and ϕT̄ .

TABLE 2.1. Number of small graphs not distinguished by zeta invariants

n # graphs Z ZZ̄ T T T̄
2 2 2 2 0 0
3 4 3 2 0 0
4 11 8 4 4 0
5 34 23 8 15 0
6 156 94 22 75 0
7 1,044 534 68 449 0
8 12,346 4,889 312 4,297 0
9 274,668 76,807 350 68,708 2

The pair of graphs (G1, G2) on 9 vertices with the same ϕT and ϕT̄ are the graphs with 18
edges pictured in Example 2.2. We remark that G1 ' Ḡ2 in this example.

One explanation for why (M2) is so effective is that in most cases it restricts the problem of
distinguishing arbitrary graphs with zeta functions to looking just at connected md2 graphs,
where zeta functions give us a lot of information (cf. Section 2.1). Similarly we can determine a
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lot about G if Ḡ is connected md2. And if neither G nor Ḡ is connected md2, this places strong
constraints on G, as we will see in the proof.

We first treat a special case, where we can say something stronger.

Lemma 2.6. Suppose G is a forest of order n. Then at least one of the following holds:
(i) Ḡ is connected md2, or
(ii) ϕT and ϕT̄ determine G among all graphs of order n.

Proof. By Table 2.1, we see ϕT and ϕT̄ determine G for at least n ≤ 8. Assume n ≥ 5. Then G
has at most 1 vertex of degree ≥ n − 2. If it has none, Ḡ is connected md2, so assume it does.
Then G must be one of the following three graphs: a star graph on n nodes, a star-like graph
on n nodes with exactly 1 node distance 2 from the hub (so the other n − 2 non-hub nodes
are adjacent to the hub), or a star graph on n − 1 nodes union a point. The latter case can be
distinguished from the previous two by counting edges. The former two can be distinguished
by looking at the number of edges in (Ḡ)†. Since ZG detects forests, ϕT and ϕT̄ determine these
3 graphs among all graphs of order n. �

Proof of Proposition 2.5. If G or Ḡ is md2, then clearly (ii) holds, so we may assume neither is
md2. Switching G and Ḡ if necessary, we may also assume G is connected. In light of the
lemma, we may further assume G† = (V †, E†) is not the null graph, and hence G† has order
n† ≥ 3.

LetH = (W,F ) be the subgraph (which is a forest) ofG induced fromW = V −V †. Note that,
in G, no w ∈W can be adjacent to more than 1 vertex in V †. Also, in any connected component
of H , there is exactly one vertex which is adjacent to a vertex in V †. Suppose that H contains at
least two vertices w1, w2. If w1 and w2 are not adjacent in G then there exists v ∈ V † such that
neither w1 nor w2 is adjacent to v in G and hence Ḡ contains the triangle w1, w2, v. If w1 and w2

are adjacent inG, then at most one of them is adjacent to a vertex in V † so there exist v1, v2 ∈ V †
which are not adjacent to either w1 or w2. Then Ḡ contains the 4-cycle {w1, w2} ∨ {v1, v2}. In
either case, both w1 and w2 appear in (Ḡ)†.

It remains to consider the case where |W | = 1. Let w be the unique vertex in W and let v
be the unique vertex in V † which is adjacent to w in G. If any two vertices v1, v2 in V † − {v}
are not adjacent, then w, v1, v2 forms a triangle in Ḡ. Also, if there exists v1, v2 ∈ V † which are
not adjacent to v then {w, v} ∨ {v1, v2} is a 4-cycle in Ḡ. In either case, w appears in (Ḡ)†. We
may therefore assume the graph induced by V † − {v} is a complete graph and there is a most
1 vertex in V † − {v} which does not connect to v. This leaves us with 2 possibilities for G, but
we see that Ḡ for these two possibilities are a star-like graph on n nodes with exactly 1 node
distance 2 from the hub or a star graph on n − 1 nodes union a point. In the proof of the last
lemma, we showed that these two graphs are distinguished by ϕT and ϕT̄ among all graphs of
order n. �

Note that the proofs of the lemma and proposition show that for n ≥ 5, there are exactly
three pairs of graphs (G, Ḡ) of order n for which it is not true that every vertex v of G is in G†

or Ḡ†. These are the following three graphs and their complements: the star graph on n nodes,
the star-like graph on n nodes with exactly 1 node distance 2 from the hub, and the star graph
on n− 1 nodes union a point. Hence in all but these three cases, every vertex of G appears in a
geodesic of G or Ḡ (or both).

3. THE BARTHOLDI ZETA FUNCTION

An alternative to using zeta functions of graphs related toG in order to studyG is to consider
a more general notion of zeta function which involves dangling nodes and links. If we think
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about the adjacency spectrum, or equivalently the closed walk spectrum, it can distinguish
things like path graphs from star graphs because backtracking is allowed in closed walks. On
the other hand, the closed walk spectrum loses a lot of information contained in the geodesic
length spectrum. Bartholdi [Bar99] introduced a more general zeta function which encodes
both the closed walk spectrum and the geodesic length spectrum.

Let γ = (e1, . . . , e`) be a closed walk of length ` = `(γ). The number of backtracks in γ is the
number of 1 ≤ i < ` such that ei+1 = e−1

i . We say γ has a tail if e` = e−1
1 . The cyclic bump

count cbc(γ) is the number of backtracks in γ plus 1 or 0, according to whether γ has a tail
or not. The cyclic permutation group 〈σ〉 defined in Section 2 acts on closed walks of length
` and preserves the cyclic bump count. A closed walk is primitive if it is not of the form kγ
for k > 1. Let a(`; c) = aG(`; c) denote the number of 〈σ〉 orbits of primitive closed walks in G
with `(γ) = ` and cbc(γ) = c. Note a(`; 0) = a(`) since cbc(γ) = 0 means γ is a geodesic. The
Bartholdi zeta function is

(3.1) ZG(t, u) =
∏
γ

(1− ucbc(γ)t`(γ))−1 =
∏
c,`

(1− uct`)−a(`;c) = exp

∑
c,`

a(`; c)
∑
k≥1

uckt`k

k

 ,

where γ runs over 〈σ〉 equivalence classes of primitive closed walks in G. Note this gives the
Ihara zeta function when u = 0: ZG(t, 0) = ZG(t).

Bartholdi [Bar99] proved an analogue of the Bass determinant formula:

(3.2) ZG(t, u) = (1− (1− u)2t2)n−m det(I − tA+ (1− u)(D − (1− u)I)t2)−1.

3.1. Properties determined by the Bartholdi zeta function—(M3). First observe (3.1) tells us
that knowing ZG is equivalent to knowing all of the numbers a(`; c). Since a(2; 1) = 2m, ZG
determines m. However, ZG does not determine n as adding isolated vertices does not change
ZG. We see ZG determines the number of 3-, 4-, and 5-cycles in G since ZG does. However it
does not determine the number of 6-cycles, as the pair of graphs in Example 2.2 have the same
Bartholdi zeta function.

[KL08] observed that one can rewrite (3.2) in terms of the generalized characteristic polyno-
mial ϕGAD(λ, x) = det(λI −A+ xD) by

(3.3) ZG(t, u) = (1− (1− u)2t2)n−mt−nϕGAD(t−1 − (1− u)2t, (1− u)t)−1,

We will write ϕAD = ϕGAD if the graph G is clear from context. It is stated in [WLLX11] that
ZG(t, u) determines ϕAD and vice versa, but this is not true without further qualification in
the same way that ZG does not determine ϕT . Namely, ϕAD determines m and n, so also
determines ZG. On the other hand, ZG does not determine n. However, since ZG determines
m we see that ZG and n determine ϕAD and vice versa.

From now on, we now consider (M3): what can be determined from n and ZG, or equiva-
lently, ϕAD?

By specializing ϕAD(λ, x) to x = 0,±1, we see ϕAD determines the spectra of A, L and |L|.
There is much literature about what these spectra individually determine about G, and various
families of graphs that are determined by such spectra (e.g., see the books [BH12], [CRS10] and
the survey articles [vDH03], [vDH09]). We just recall a few things determined by knowing all
of these spectra: the number of edges, regularity, the number of components, the number of
bipartite components, the complexity and the closed walk spectrum.

From ZG, we also know whether G is connected md2, and all of the things discussed in
Section 2.1. In addition, [WLLX11] proves that ϕAD determines the degree sequence of G.
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3.2. Bartholdi zeta functions of complements—(M4). Finally, consider our last method (M4):
what can be determined from n, ZG and ZḠ.

Equation (3.3) tells us these quantities determine the spectra of A+ xD and A+ xD − J for
all x. When x = 0, [JN80] showed this determines the spectra of A+ yJ for all y, and the proof
(see [vDH03] for a simpler proof) in fact works for x 6= 0, i.e., n, ZG and ZḠ determine the
generalized characteristic polynomial ϕADJ(λ, x, y) = ϕGADJ(λ, x, y) = det(λI −A+ xD + yJ).
The converse, that ϕADJ determines n, ZG and ZḠ, is straightforward.

Consequently, (M4) determines everything (M2) and (M3) do. In fact, we show below that
(M4) determines everything (M1) does.

Lemma 3.1. Let X and Y be n × n and m ×m matrices respectively and let Jnm denote the n ×m

all ones matrix. Let M be the block matrix M =

[
X Jnm
Jnm Y

]
. We will write J for the square all ones

matrix when the order is clear from context. The following are true:

(1) The spectra of M and J −M are determined by the spectra of X, J −X,Y , and J − Y .
(2) The spectra of X and J −X are determined by the spectra of M , J −M , Y , and J − Y .

Proof. Note that, for an r × r matrix, one can determine the spectrum of the matrix from the
traces of the first r powers of the matrix and, conversely, one can determine the traces of all
powers from the spectrum.

We can prove using induction that Mk has the form
[
Xk +Ak Bk

Ck Y k +Dk

]
where the ma-

trices Ak, Bk, Ck, Dk are sums of matrices which are the product of k matrices coming from
{X,Y, Jnm, Jmn}. For k ≥ 2, each product of k matrices appearing in Ak and Dk is such that at
most k − 2 of the k matrices are X’s or Y ’s, and for Bk and Ck at most k − 1 are X’s or Y ’s.

From the equation for Mk, we get that tr(Mk) = tr(Xk) + tr(Y k) + tr(Ak) + tr(Dk). We also
use the following properties: tr(XJnmY Jmn) = (

∑
i,j xij)(

∑
i,j yij) = tr(XJ)tr(Y J), trace is

invariant under cyclic permutations of products, and the product of any two all ones matrices
is a scalar multiple of an all ones matrix. From these properties, it follows that tr(Ak) and
tr(Dk) can be determined from tr(XiJ), and tr(Y iJ) for i = 0, 1, 2, .., k − 2. This leads to a
relation of the form tr((J −X)k) = (−1)k(tr(Xk)−ktr(Xk−1J) + · · · ), where the omitted terms
are determined by tr(XiJ) for i = 0, 1, 2, ..., k − 2, as well as a similar relation for Y .

We now prove the two statements. Note that in both cases we can determine n and m. Also
note that J −M is the block diagonal matrix with J − X and J − Y on the diagonals, so any
two of the spectra of J −M,J −X, and J − Y determine the third.

First suppose we know the spectra of the matrices X, J −X,Y , and J − Y . Then we know
tr((J −X)i) and tr(Xi) for all i. From this, we can recursively determine tr(XiJ) for all i, and
similarly for Y . We can therefore compute tr(Mk) = tr(Xk) + tr(Y k) + tr(Ak) + tr(Dk) for all
k and thus determine the spectrum of M .

Suppose now that we know the spectra of Y, J −Y,M, J −M . As mentioned above, this tells
us the spectrum of J − X . It remains to show that we can compute tr(Xk) for k = 1, 2, ..., n.
For k = 1, 2 we can find tr(X) and tr(X2) from tr(M) = tr(X) + tr(Y ) and tr(M2) = tr(X2) +
tr(Y 2)+tr(JmnJnm)+tr(JnmJmn). If k > 2 and we know tr(Xi) for i < k, then from tr((J−X)i)
and tr(Xi) for i = 1, 2, .., k−1 we can find tr(XiJ) for i = 1, 2, ..., k−2, and therefore also tr(Ak)
and tr(Dk). From these, we can compute tr(Xk) from tr(Mk) = tr(Xk) + tr(Y k) + tr(Ak) +
tr(Dk). �

If D is the degree matrix of G, we write D̄ for the degree matrix of Ḡ.
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Theorem 3.2. Fix x ∈ C. Let G1 and G2 be two graphs of the same order and let H be any graph. The
graphs G1 ∨H and G2 ∨H are cospectral with respect to A + xD and Ā + xD̄ if and only if G1 and
G2 are cospectral with respect to A+ xD and Ā+ xD̄.

Proof. Let M = A + xD and note that, for an order r graph, M̄ := Ā + xD̄ = J −M + (x(r −
1) − 1)I . Thus if we know x and r, knowing the spectrum of M̄ is equivalent to knowing the
spectrum of J − M . Let n be the order of G1 and G2, let m be the order of H , and denote
their respective matrices M = A + xD by MGi and MH . The join Gi ∨H has matrix MGi∨H =[
MGi + xmIn Jnm

Jmn MH + xnIm

]
. We can thus apply the previous lemma to show that if G1 and

G2 are cospectral with respect to M and M̄ , then so are G1 ∨H and G2 ∨H and vice versa. �

This is already well known in the case that x = −1, which corresponds to the Laplacian—in
fact less is needed in this case since the Laplacian spectrum of G determines that of Ḡ.

Corollary 3.3. The graphs G1 and G2 have the same spectra with respect to A and Ā (or |L| and
|L|), if and only if the same is true for G∗1 and G∗2. Similarly, G1 and G2 have the same generalized
characteristic polynomial ϕADJ if and only if the same is true for G∗1 and G∗2, i.e., ϕG1

ADJ = ϕG2
ADJ if and

only if ϕG
∗
1

ADJ = ϕ
G∗2
ADJ .

4. CONSTRUCTIONS

Here we discuss three well-known constructions of cospectral graphs, and show that in
many cases, such graphs are distinguished by methods (M1)–(M4) using constraints on de-
gree distributions. This provides some evidence for our conjectures in the next section that
most cospectral graphs can be distinguished by any of (M1)–(M4).

In the last part of this section, we give a new construction for graphs which cannot be distin-
guished by (M1)–(M4), which generalizes the pair of graphs from Example 2.1.

4.1. GM switching. Godsil and McKay present a method for constructing cospectral pairs of
graphs [GM82], which is now referred to as GM switching. We say G satisfies the (k + 1)-GM
(or just GM) condition if there is an ordering of the vertices such that the adjacency matrix can
be written in the form

A =


B1 B12 · · · B1k N1
tB12 B2 · · · B2k N2

...
. . .

...
tB1k · · · tBk−1,k Bk Nk
tN1 · · · tNk−1

tNk C


where (i) each GBi is regular, (ii) each Bi,j has constant row and column sums, and (iii) each
column of each Ni has exactly 0, bi/2 or bi 1’s. Here bi is the order of each square matrix Bi,
and we assume at least one of the bi’s is even. Note k + 1 is the number of diagonal blocks, so
the ordering of the vertices and the size of the Bi’s determines a partition of the vertex set into
k + 1 subsets VB1 , . . . , VBk

, VC .
Let Ñi be the matrix formed from Ni by replacing each column v of Ni which consists of

bi/2 ones by the column Jbi,1 − v. The GM switch of G is the graph G̃ with adjacency matrix Ã
which is gotten from A by replacing each Ni with Ñi. Then G and G̃ are cospectral with respect
to the adjacency matrix. The proof is to exhibit a matrix Q which conjugates A to Ã and has
constant row and column sums of 1, and hence commutes with the all ones matrix J . It follows
that the complements ofG and G̃ are also cospectral with respect to the adjacency matrix. Also,
by Corollary 3.3, the cones of G and G̃ are cospectral with respect to the adjacency matrix.
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Haemers and Spence introduced a special case of GM switching [HS04], which they called
GM* switching, which gives cospectral pairs with respect to any matrix of the form A + xD.
They only define GM* switching in the case where k = 1, but it works in the more general setup
as well. We say G satisfies the (k + 1)-GM* condition if G satisfies the (k + 1)-GM condition
with the additional requirement that each vertex in GBi has the same degree in G (i.e., each Ni

has constant row sums). This condition guarantees that G and G̃ have the same degree matrix
D. Also D and J commute with Q, the matrix which conjugates A to Ã, and hence A+xD+yJ

and Ã+xD+yJ are cospectral for any x, y soG and G̃ have the same generalized characteristic
polynomial ϕADJ . Also, by Corollary 3.3, the cones of G and G̃ have the same ϕADJ . We call
this (k + 1)-GM* switching and say that (G, G̃) is a (k + 1)-GM* pair provided G 6' G̃.

In the next section, we will find that GM* switching accounts for a significant percentage of
graphs up to 11 vertices which have the same ϕADJ (see Table 5.1). For the graphs on up to 10
vertices, 3-GM* switching does not produce any such examples that 2-GM* does not. However
for 11 vertices, there are 108 3-GM* pairs which cannot be obtained by 2-GM* switching, even
if one allows successive 2-GM* switching. (It happens that (G1, G2) can be a 3-GM* pair but
not a 2-GM* pair, but that G1 and G2 are both obtained as 2-GM* switches from a third graph
G3.)

Example 4.1. The graphs J?BD?oX[F[? and J?‘CP‘‘LE{? on 11 vertices and 18 edges drawn
below are a 3-GM* pair, but not a 2-GM* pair. Further, neither of these form a 2-GM* pair with any
other graph. The subgraphs GB1 , GB2 , and GC are the subgraphs induced by vertices 1–6, 7–9, and
10–11 respectively.

1 3

2 6

45

7

8

9

10 11

1 3

2 6

45

7

8

9

10 11

We now focus on the case of 2-GM switching. For simplicity, we omit the subscripts and
write the adjacency matrix as

A =

[
B N
tN C

]
.

For G 6' G̃, we need B to have even size ≥ 4. Further, the larger B is, the less likely it is that
the GM condition will be satisfied. So Haemers and Spence [HS04, Thm 3] use GM switching
with B of size 4 to get a lower bound on the number of non-DS graphs. The following shows
that most cospectral pairs thus constructed are distinguished by zeta functions.

Theorem 4.2. Suppose GB is regular on 4 vertices and GC is an md1 (resp. md2) graph on n vertices.
Then the proportion of GM-admissible choices of N such that the pair (G, G̃) of labeled graphs formed
by GM switching on (B,C,N) which are distinguished by Z∗ (resp. Z) goes to 1 as n→∞.

Proof. For each column of N , there are 2 +
(

4
2

)
= 8 possible choices, which we count with equal

probability. The probability that at least 2 columns are all ones is

1−

[(
n

0

)(
1

8

)0(7

8

)n
+

(
n

1

)(
1

8

)1(7

8

)n−1
]

= 1−
(

7 + n

8

)(
7

8

)n−1

.
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When this is satisfied, G and G̃ are md1 if GC is md1 and md2 if GC is md2. Since this proba-
bility tends to 1 as n→∞, from now on, we will assume G and G̃ are md1 in the case of Z∗ or
md2 in the case of Z.

If G and G̃ are not distinguished by Z∗ (resp. Z), then the products of the vertex degrees
(resp. degrees minus 1) must be the same. Since all vertices coming from GC have the same
degree, this is equivalent to knowing that the products of the degrees of vertices (resp. degrees
minus 1) from B are the same. Let k be the degree of a vertex in GB plus the number of all
ones columns in N in the case of Z∗, or this number minus 1 in the case of Z. Let N0 be the
submatrix of N formed by removing the columns consisting of all zeroes or all ones. Let xi
denote the number of 1’s in the i-th row of N0. Then G and G̃ being distinguished by Z∗ or Z
implies

(4.1)
4∏
i=1

(k + xi) =

4∏
i=1

(k + n0 − xi),

where n0 is the number of columns in N0.
View n0 as fixed for now. Since x4 = 2n0− x1− x2− x3, for fixed x1, x2, the solutions to (4.1)

in x3 are the solutions to a degree 2 polynomial in x3, of which there are at most 2. Now view
the top 2 rows of N0 as fixed. Let r be the number of columns in N0 which have exactly one 1
in the first 2 entries. Then there are r + 1 choices for x3. There are 2r choices for row 3 of N0,
hence for an integer 0 ≤ y ≤ r, the probability that x3 = y is

(
r
y

)
1
2r ≤

(
r
dr/2e

)
1
2r . Given r ≥ 3, the

probability that x3 avoids solving (4.1) is at least

1− 2

(
r

dr/2e

)
1

2r
≥ 1− 2√

3dr/2e+ 1
≥ 1−

√
8

3r
.

(Here we use the inequality
(

2n
n

)
≤ 22n√

3n+1
, which implies

(
r
dr/2e

)
≤ 2r√

3dr/2e+1
.) Also note

P (width(N0) = n0) =

(
n

n0

)(
3

4

)n0
(

1

4

)n−n0

and for a fixed n0 the probability that the number of columns in N0 which have exactly one 1
in the first 2 entries is r is

P (r|n0) =

(
n0

r

)(
2

3

)r (1

3

)n0−r
.

Fix 0 < δ < 1. By the law of large numbers, for any ε > 0, the probability that r ≥ n0(2
3 − ε)

goes to 1 as n0 → ∞. Hence the probability that r ≥ nδ0 goes to 1 as n0 → ∞. Similarly, the
probability that n0 ≥ nδ goes to 1 as n0 →∞. So the probability that x3 avoids the solutions of
(4.1) is at least

P (n0 ≥ nδ)P (r ≥ nδ0)

(
1−

√
8

3nδ0

)
≥ P (r ≥ nδ2)

(
1−

√
8

3nδ2

)
,

which goes to 1 as n→∞. �

Let gn denote the number of simple graphs (up to isomorphism) of order n.

Corollary 4.3. The number of graphs G on n vertices for which there exists a cospectral nonisomorphic
graph G̃ but Z

G
6= Z

G̃
is at least n3gn−1( 1

24−o(1)). The same statement is true with Z
G
6= Z

G̃
replaced

by Z
G∗ 6= Z

G̃∗ .
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Proof. Haemers and Spence [HS04, Thm 3] show there are at least n3gn−1( 1
24 − o(1)) non-

isomorphic pairs (G, G̃) obtained from GM switching with B of size 4. Further, for almost
all of these pairs, both graphs are md2. Since, in the argument above, we can replace the con-
dition that C is md2 or md1 with knowing G and G̃ are md2 or md1, we see almost all such
pairs are distinguished by Z or Z∗. �

4.2. Coalescence construction. Suppose G1 and G2 are two graphs of order n with the same
adjacency spectra but different degree sequences. Assume there are vertices x1 of G1 and x2 of
G2 such that G1 − {x1} and G2 − {x2} are cospectral. Let Ui be the vertex set of Gi − {xi}. Let
Γ be any graph with a fixed vertex y. Let G′i be the coalescence of (Gi, xi) with (Γ, y), i.e., the
union of Gi and Γ after identification of xi with y.

Proposition 4.4. With notation as above, Spec(G′1) = Spec(G′2) for any (Γ, y). If G1 and G2 are md2
and

∏
v∈U2

(deg(v)− 1) 6=
∏
v∈U2

(deg(v)− 1), then ZG′1 6= ZG′2 . Similarly, if G1 and G2 are md1 and∏
v∈U1

deg(v) 6=
∏
v∈U2

deg(v), then ZG′∗1 6= ZG′∗2 .

Proof. The cospectrality is due to Schwenk [Sch73].
For the distinction by zeta functions, note that the fact that G1 − {x1} and G2 − {x2} are

cospectral implies that degG1
(x1) = degG2

(x2) as the spectrum determines the number of edges.
Note degGi

(v) = degG′i(v) for any v ∈ Ui and degG′1(v) = degG′2(v) for any vertex v of Γ. The
assertions follow as ZG (resp. ZG∗) determines the product of the degrees minus 1 (degrees) of
the pruned graph G†. �

Example 4.5. Let G1 and G2 be the graphs F?zPw and F@Rfo on 7 vertices and 10 edges pictured
below, where x1 and x2 are the white vertices.

. .

.
.

. .

.

. .

.
.

. .

.

Then G1 and G2 are cospectral but not isomorphic, whereas G1−x1 and G2−x2 are cospectral because
they are isomorphic. Here x1 and x2 have degree 2. The other vertex degrees are (4, 4, 4, 2, 2, 2) for G1

and (5, 3, 3, 3, 2, 2) for G2. It is clear that the products of the degrees and the products of the degrees
minus 1 are different. Thus, for any coalescences G′1 and G′2 of (G1, x1) and (G2, x2) with any (Γ, y),
we have ZG′1 6= ZG′2 and ZG′∗1 6= ZG′∗2 .

We assumed that G1 and G2 are md2 or md1 in this proposition for simplicity, but this is not
necessary. What one really needs is a condition on pruned subgraphs of G′1 and G′2.

Note the coalescence construction includes the case of a disjoint union. If H1 and H2 are
cospectral, we can take Gi to be Hi disjoint union a single vertex xi. Then G1 and G2 are
cospectral, as are G1 − {x1} = H1 and G2 − {x2} = H2 by assumption. Let Γ be any graph
and y any vertex in Γ. Then the coalescence of (Gi, xi) with (Γ, y) is simply the disjoint union
Hi t Γ of Hi with Γ. However in the case of disjoint unions, we already know the stronger
statement that ZH1 6= ZH2 implies ZG′1 6= ZG′2 since zeta functions factor into products over
their connected components (though this factorization is not true for the zeta of the cones ZG′∗i ).
E.g., if H1 and H2 are the unique pair of cospectral graphs on 5 vertices, then ZH1tΓ 6= ZH2tΓ

for any Γ, though G1 and G2 are not md2.

4.3. Join construction. Suppose G1 and G2 are two graphs of order n which have the same
Laplacian spectra but different degree sequences. Let Γ be an arbitrary graph. If G1 or G2 has
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an isolated vertex, then assume Γ has at least 2 vertices. Then the joins G1 ∨ Γ and G2 ∨ Γ are
connected and md2.

Proposition 4.6. With notation as above, SpecL(G1 ∨ Γ) = SpecL(G2 ∨ Γ) for any Γ. However
ZG1∨Γ 6= ZG2∨Γ for all but finitely many Γ. Specifically, there is a finite set S consisting of at most
n− 1 integers such that ZG1∨Γ 6= ZG2∨Γ for any Γ whose order r does not lie in S.

Proof. The first part is true for any Γ.
Let d1, . . . , dn be the degree sequence forG1 and d′1, . . . , d

′
n be the degree sequence forG2. Let

δ1, . . . , δr be the degree sequence for Γ. Then the degree sequence for G1 ∨ Γ is d1 + r, . . . , dn +
r, δ1 + n, . . . , δr + n and similarly for G2 ∨ Γ. Assume r ≥ 2 so G1 ∨ Γ and G2 ∨ Γ are md2.
Consequently ZG1∨Γ determines∏

(di + r − 1) ·
∏

(δj + n− 1)

and similarly for G2 ∨ Γ. Hence ZG1∨Γ 6= ZG2∨Γ if∏
(di + r − 1) 6=

∏
(d′i + r − 1).

Consider the polynomial
f(x) =

∏
(di + x)−

∏
(d′i + x),

which has degree < n. The previous equation holds if and only if r − 1 is not a root of f(x),
which can only happen for at most n− 1 values of r. �

Note, one can replace the bound on the size of S by the number of differing vertex degrees
(counting multiplicity) with G1 and G2. Also, this proposition gives a non-algorithmic proof
of Lemma 2.3 by showing that any two order n graphs with different degree sequences can by
distinguished by the zeta functions of n joins with graphs of distinct orders.

Example 4.7. Let G1 and G2 be ECZo and EEr_. These are graphs on 6 vertices with the same Lapla-
cian spectra, but G1 has degree sequence (4, 2, 2, 2, 2, 2) and G2 has degree sequence (3, 3, 3, 2, 2, 1).

.

..

.

.

.

. .

.

. .

.

For any (non-null) graph Γ, the graphs G1∨Γ and G2∨Γ are automatically md2. The polynomial f(x)
in the previous proof is just f(x) = (4 + x)(2 + x)5 − (3 + x)3(2 + x)2(1 + x) = (2 + x)2(2x + 5).
This has no positive roots, so ZG1∨Γ 6= ZG2∨Γ for any Γ.

The same conclusion is true if we replace G1 and G2 by their complements.

Corollary 4.8. There are at least 2gn−6 pairs of graphs (G1, G2) of order n which have the same Lapla-
cian spectra but different Ihara zeta functions.

4.4. A new construction. There is one pair of non-isomorphic md2 graphs on 9 vertices which
have the same generalized characteristic polynomial ϕADJ , the pair from Example 2.1. This
is the smallest such example. This pair does not occur as the result of GM* switching for the
following reason: the matrices A + xD are similar for all x, but there is no matrix P such that
P−1(A1 + xD1)P = (A2 + xD2) for all x, as must be the case for GM* pairs. (In [SS13], it was
mistakenly written that all pairs of connected md2 graphs on n ≤ 11 vertices with the same zeta
function, adjacency spectrum, and Laplacian spectra are obtained by GM* switching, but this is
false as this example shows. The second author of that paper informed us that the conclusion
of that sentence, “are obtained by GM* switching,” should be “have the same ϕADJ .”)
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There do however exist matrices P andR such that (A1+xD1)(P+xR) = (P+xR)(A2+xD2)
and P +xR commutes with J for all x and is invertible for all real valued x. Here we prove this
example is part of a more general construction of pairs of graphs with the same ϕADJ which
cannot be explained by GM* switching. The fact that the conjugating matrix P + xR needs
to depend on x makes this construction more delicate (and complicated) than GM* switching
(and as far as we know, there are no other such constructions). So we first describe it in a
concrete way, and then remark afterwards what are the necessary abstract conditions for this
construction to work.

Construction 4.9. Consider adjacency matrices A1, A2 of the following form:

A1 =


B1 B12 · · · B1k N1
tB12 B2 · · · B2k N2

...
. . .

...
tB1k · · · tBk−1,k Bk Nk
tN1 · · · tNk−1

tNk C

 , A2 =


B1

tB12 · · · tB1k N1

B12 B2 · · · tB2k N2
...

. . .
...

B1k · · · Bk−1,k Bk Nk
tN1 · · · tNk−1

tNk C


Here we allow the Bi’s to be chosen from among the following 4 × 4 adjacency matrices given in 2 × 2
block form by: [

0 0
0 0

]
,

[
0 I
I w

]
,

[
0 J
J 0

]
,

[
w 0
0 w

]
,

[
w J
J w

]
,

where w = J − I . The Bij ’s (i < j) are allowed to be arbitrarily chosen from among the following 0-1
matrices with constant row and column sums:[

0 0
0 0

]
,

[
J J
J J

]
,

[
0 J
J 0

]
,

[
J 0
0 J

]
,

[
I 0
0 I

]
,

[
w 0
0 w

]
,

[
0 I
w 0

]
,

[
0 w
I 0

]
,[

I J
J I

]
,

[
w J
J w

]
,

[
J w
I J

]
,

[
J I
w J

]
,

[
I I
w I

]
,

[
I w
I I

]
,

[
w I
w w

]
,

[
w w
I w

]
.

We allow C to be any m×m adjacency matrix, and the Ni’s are 4×m matrices such that each column
of Ni consists of all zeros or all ones.

Then ϕG1
ADJ = ϕG2

ADJ , where Gi is the graph with adjacency matrix Ai.

Proof. Note that as each Bij has constant row and column sums and each Ni has constant row
sums,G1 andG2 have the same degree matrix, call thisD. Consider the following 4×4 matrices:

Q =

[
w w − I

w − I I

]
, S =

1

2

[
I − w 0

0 w − I

]
Let P be the block diagonal matrix whose first k blocks are the matrix Q and last block is the
m ×m identity matrix. Let R be the block diagonal matrix whose first k blocks are the matrix
S and last block is the m×m zero matrix.

One can check that (A1 + xD)(P + xR) = (P + xR)(A2 + xD) for all x. Note that P has
constant row and column sums of 1 and R has constant row and column sums of 0 so P + xR
commutes with J for all x. Therefore (A1 + xD + yJ)(P + xR) = (P + xR)(A2 + xD + yJ) for
all x, y. Also, det(P + xR) = det(Q+ xS)k = (−x2 + 2x− 5)k which is nonzero for all real x. It
follows that A1 + xD + yJ and A2 + xD + yJ have the same eigenvalues for all x, y so G1 and
G2 have the same ϕADJ . �

Example 4.10. The pair of graphs G1 and G2 from Example 2.1 can be obtained from the above con-

struction as follows. Take k = 2 and B1 = B2 =

[
0 I
I w

]
and B12 =

[
I I
w I

]
. Take C to be the 1 × 1

zero matrix, N1 to be the 4 × 1 zero vector and N2 to be the 4 × 1 all ones vector. The resulting graphs
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are the graphs from Example 2.1, which we redraw below with the vertices labeled in the order that they
appear in this description.

2

4

3

1

6

8

7

5

9

2

4

3

1

6

8

7

5

9

If in the previous example, we take B1, B2, B12 as before but let C be any adjacency matrix
and N1 = 0 and N2 = J (appropriately sized all zero and all ones matrices respectively), then
this construction always results in a non-isomorphic pair of graphs. Hence this construction
produces at least gn−8 non-isomorphic graphs with the sameϕADJ on n vertices. On 10 vertices,
there are 6 different non-isomorphic pairs of graphs that can be built using this construction.

This construction can be made more general. Given a set of n× n adjacency matrices Bi and
a set of n×nmatricesBij with 0 and 1 entries and constant row and column sums, then we can
do an analogous construction if there exist n×nmatricesQ and S with the following properties.
First, Q and S should have constant row and column sums of 1 and 0 respectively and have
det(Q + xS) not equal to the zero polynomial. If Di is the degree matrix of Mi, then we need
QBi = BiQ, DiS = SDi, and DiQ − QDi = SBi − BiS for all i. Also, we need BijQ = QtBij ,
tBijQ = QBij , BijS = StBij , and tBijS = SBij . If all of these properties are satisfied, then any
A1 and A2 built in the same manner as in the construction will result in graphs with the same
ϕADJ . Note that at least one of the Bij must be non-symmetric for A1 and A2 to be different,
but this does not guarantee that the resulting graphs will be non-isomorphic.

5. CALCULATIONS AND CONJECTURES

In this section, we present our computational study of comparing graphs via the usual spec-
tral methods (A, L and |L|) with methods (M1)–(M4). Our findings, together with the above
results, lead us to several formal and informal conjectures.

In [HS04], Haemers and Spence enumerated the number of graphs on n ≤ 11 vertices which
are not DS, not L-DS, and not |L|-DS (see also [BS09] and [Spe] for some errata and additional
data for n = 12). This data is summarized in the A, L and |L| columns of Table 5.1. They also
enumerated the number of non-DS graphs explained by 2-GM switching and 2-GM* switching.
This data is recalled in the 2-GM and 2-GM* columns of Table 5.1. The 2-GM column is a lower
bound for the A column, and the 2-GM* will be a lower bound for all other columns in the
table.

Our main numerical results are a similar enumeration of the number of graphs on n ≤ 11 ver-
tices which are not determined by methods (M1)–(M4) (considering these methods separately—
considering them in tandem is equivalent to just using (M4)). The Z column of Table 5.1 gives
the number of order n graphs which are not DZ , i.e., not determined by (M3). (Recall that
non-DZ implies non-DS, non-L-DS, and non-|L|-DS.) It—surprisingly to us—turned out that
for n ≤ 11 being DZ*, DZZ̄ and DZZ̄ (i.e., not determined by (M1), (M2) or (M4)) are all equiv-
alent. The number of graphs which do not satisfy these conditions is given in the ZZ̄ column.

This data suggests several things: (i) there is not much difference among (M1)–(M4); (ii) any
of (M1)–(M4) seems to do much better thanA, L or |L|; (iii) most GM-pairs are distinguished by
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TABLE 5.1. Counting graphs not determined by spectral invariants
(M3) is in the Z column; (M1), (M2) and (M4) are in the ZZ̄ column

n # graphs A L |L| Z ZZ̄ 2-GM 2-GM*
≤ 5 51 2 0 6 0 0 0 0

6 156 10 4 16 0 0 0 0
7 1,044 110 130 102 0 0 40 0
8 12,346 1,722 1,767 1,201 0 0 1,054 0
9 274,668 51,038 42,595 19,001 2 2 38,258 0

10 12,005,168 2,560,606 1,412,438 636,607 10,146 10,140 2,047,008 9,480
11 1,018,997,864 215,331,676 91,274,836 38,966,935 1,353,426 1,353,402 176,895,408 1,297,220

(M1)–(M4); (iv) most graphs not distinguished by (M1)–(M4) are explained by 2-GM* switch-
ing. (We note that for n = 11, 216 additional non-DZZ̄ graphs are explained by 3-GM* switch-
ing, but none for n ≤ 10.1 Several more non-DZZ̄ graphs for 9 ≤ n ≤ 11 may also be explained
by Construction 4.9.) These suggestions are congruous with our work in previous sections. We
just state one of them as a formal conjecture.

Conjecture 5.1. We have: (i) almost all graphs are DZ*; and (ii) almost all non-DS graphs are DZ*.
Further, (iii) ifHn (resp.H′n) is the set of non-DS (resp. non-DZ*) graphs of order n, then #H′n/#Hn →
0 as n→∞.

The above statements are also true if we replace DZ* with any of DZZ̄, DZ , and DZZ̄ .

In light of Haemers’ conjecture that almost all graphs are DS, (ii) seems to be much stronger
than (i). Note (iii) is strictly stronger than (ii) as not all DS graphs are DZ*. One reason to believe
(ii) is that it appears a significant fraction of non-DS graphs are explained by GM switching.
Theorem 4.2 suggests that most of these are distinguished by (M1)–(M4). Further, most of the
graphs not distinguished by (M1)–(M4) are explained by GM* switching, which appears to
account for just a trivial fraction of graphs obtained by GM switching (see [HS04]). Note this
reasoning does not apply to distinguishing graphs which are not L-DS or |L|-DS.

In fact, Theorem 4.2 suggests that just the Ihara zeta function ZG by itself might differentiate
most pairs of graphs with the same adjacency spectrum. However, if we are just looking at ZG,
it is more reasonable to restrict to md2 graphs. Let us say an md2 graph is DZ if there is no
other md2 graph of the same order with the same Ihara zeta function.

Setyadi–Storm [SS13] enumerated all pairs of connected md2 graphs with the same Ihara
zeta function for n ≤ 11. This does not exactly tell us the number of non-DZ md2 graphs (even
among connected graphs), so we did a similar enumeration to Table 5.1 for md2 graphs with
n ≤ 10. The results are in Table 5.2, with the column headings meaning the same things as in
Table 5.1, except restricted to md2 graphs. The only new column is the Z column, which is the
number of non-DZ md2 graphs on n vertices.

We remark that while computing this data, we discovered some small errors in the tables in
[SS13] for n = 11, 12. Namely, in the cases where more than 2 connected md2 graphs have the
same Ihara zeta function, [SS13] undercounts the number of pairs. For instance, for n = 10, the
entries in the [SS13] tables should be augmented by 1 for m = 20, 21, 24, 25. In each of these
cases, there is one triple of connected md2 graphs all with the same zeta function.

1To enumerate graphs obtained by 3-GM* switching, we observe that to get a non-isomorphic switch G̃ from G,
one needs at least one of the Bi’s to be even of size ≥ 4, say B1. One may also assume B2 has size > 1, and the size
of B2 is not relatively prime to the size of B1. Then for each G which is not distinguished by ϕADJ , one can check if
it satisfies the 3-GM* condition by iterating first through all “admissible” choices for VB1 , then through choices for
VB2 .
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TABLE 5.2. Counting md2 graphs not determined by spectral invariants

n # graphs A L |L| Z Z ZZ̄
≤ 6 77 0 0 4 0 0 0

7 510 26 64 37 0 0 0
8 7,459 744 1,156 725 2 0 0
9 197,867 32,713 31,353 13,878 6 2 2

10 9,808,968 1,727,629 1,184,460 535,080 10,130 10,094 10,088

This data, together with our work above, suggests that, when restricting to md2 graphs,
there is little difference between methods (M1)–(M4) and just using the Ihara zeta function.
Hence we are led to the following conjecture.

Conjecture 5.2. Almost all md2 graphs are DZ, and almost all non-DS md2 graphs are DZ. In fact, if
H(2)
n (resp.H′(2)

n ) is the set of non-DS (resp. non-DZ) md2 graphs of order n, then #H′(2)
n /#H(2)

n → 0
as n→∞.

Since almost all graphs are md2 for n large, this first statement would imply that almost all
graphs of order n are determined by their Ihara zeta function.

We performed the above calculations by generating the graphs with fixed n and m using
nauty [nauty] in Sage 6.1.1 [Sage]. Then we used Sage to compute det |L| = limt→−1(1 −
t2)n−mZG(−1)−1 and det(4D + 2A − 3I) = (−3)n−mZG(−2)−1 for each G, and similarly for
G∗ and Ḡ. By sorting the graphs according to these values for G∗ or G and Ḡ, we made a list
of candidate non-DZ* and non-DZZ̄ graphs. For each of these pairs, we check to see if the
corresponding Ihara zeta functions match up. We compute the Ihara zeta functions by first
constructing G†, then using the Hashimoto determinant formula. This is much faster than us-
ing Sage 6.1.1’s built-in function to compute ZG(t)−1. To conserve memory, for n = 10, 11, we
wrote out the data of the special values of the zeta function with the graph6 string to a file for
fixed n and m, and sorted these files using the Unix sort tool. Then for each pair of graphs
with the same ZG and ZḠ, we compared their generalized characteristic polynomials ϕADJ .
This takes care of (M1), (M2) and (M4). We will return to (M3) momentarily.

This method of making a first pass by checking just 2 values of the zeta function ZG(−1)
and ZG(−2) is based on the heuristic idea that it is unlikely that 2 graphs G1 and G2 will have
the same spectra for several different random linear combinations of A and D, unless they
have the same spectra for all linear combinations of A and D. (This is part of the reason we
believe the Ihara zeta function has essentially the same distinguishing power as the Bartholdi
zeta function.) From some computational experimentation, we discovered that just knowing n,
m and the 2 values ZG(−1) and ZG(−2) almost always determines ZG(t) (for n ≤ 11).

This heuristic also suggests that using 2 independent spectra to distinguish graphs is much
better than a single one. To further test this idea, we enumerated graphs which are not deter-
mined by the following sets of spectra: A; A and L; A, L and |L|; all three of these plus the
Ihara zeta function, and finally ϕAD. These numbers are respectively given in the 3rd through
7th columns of Table 5.3.

Note that even though the numbers of graphs not distinguished byA or L or |L| individually
are quite large (cf. Table 5.1), the number of graphs not distinguished by combining 2 or more of
these shrinks drastically. (We did not compute the numbers for combining A and |L| or L and
|L| for all n ≤ 11, but we expect a similar phenomenon to hold in these cases also. For instance
when n = 9, there are only 8 graphs not distinguished by A and |L|, and 4,405 graphs not
distinguished by L and |L|.) This suggests that, say, using A and either L or |L|, to distinguish
graphs is closer in effectiveness to using (M1)–(M4) than to using just A or just L or just |L|.
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TABLE 5.3. Counting graphs not determined by combining spectral invariants

n # graphs A AL AL|L| AL|L|Z Z
≤ 5 51 2 0 0 0 0

6 156 10 0 0 0 0
7 1,044 110 0 0 0 0
8 12,346 1,722 0 0 0 0
9 274,668 51,038 82 2 2 2

10 12,005,168 2,560,606 13,948 10,718 10,150 10,146
11 1,018,997,864 215,331,676 1,468,790 1,361,246 1,353,498 1,353,426

The calculations for Table 5.3 were obtained by comparing spectra via spectral moments, and
successively sieving out graphs. E.g., once we know all pairs or graphs with the same A- and
L-spectra, we search through these to see which also have the same |L|-spectra. To compute
the last column (i.e., (M3)), we looked at all pairs with the same A-, L-, |L|-spectra and Ihara
zeta functions, and checked their generalized characteristic polynomials ϕAD.

We conclude with a couple of final remarks about related calculations.
First, Brouwer and Spence [BS09] find that quite large families can have the same adjacency

spectrum (46 graphs can have the same spectrum on 11 vertices, and this goes up to 128 on 12
vertices). It seems much rarer for a large family of graphs to have the same zeta functions. We
found that on 10 vertices there are 4 triples of graphs with the same ϕADJ , and no larger fami-
lies. On 11 vertices, there are 1,442 triples of graphs with the same ϕADJ , and 192 quadruples,
but no larger families.

Second, one might wonder about using cones or complements with the usual spectra. Know-
ing the Laplacian spectrum of G is equivalent to knowing it for Ḡ or G∗, but what about A or
|L|? From Corollary 3.3, we know that knowing the A- or |L|-spectrum of G and Ḡ implies the
same forG∗ (and conversely knowing theA- or |L|-spectrum ofG∗ andG∗ implies the same for
G). In Table 5.4, we enumerate the graphsG on n ≤ 10 vertices which are not determined by the
following: spectrum of G∗, spectra of G and Ḡ, |L|-spectrum of G∗ and |L|-spectrum of G and
Ḡ, listed respectively in columns 3 through 6. The data in the AĀ columns is already in [HS04].
We note there has been recent work towards showing almost all graphs are distinguished by
the A- and Ā-spectra—see, e.g., [Wan13] or [vDH09].

TABLE 5.4. Counting graphs not determined by cones and complements for A
and |L|

n # graphs A∗ AĀ |L|∗ |L||L|
≤ 4 17 0 0 2 2

5 34 0 0 4 4
6 156 0 0 16 16
7 1,044 44 40 102 102
8 12,346 1,194 1,166 1,139 1,139
9 274,668 44,120 43,811 18,748 18,748

10 12,005,168 2,423,121 2,418,152 633,232 633,226

We remark that for A- or |L|-spectra, there appears to be little difference between using G
and Ḡ versusG∗ versus justG (cf. Table 5.1; see [HS04], [Spe] for theAĀ data when n = 11, 12).
However, unlike the case of L-spectra, there is at least some difference. In particular, the A- or
|L|-spectrum of G∗ does not always determine that of G, but Table 5.4 suggests it usually does
(particularly for |L|).
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The coincidence of methods (M1) and (M2) on n ≤ 11 vertices means that for graphs with
n ≤ 11 vertices of size m, ZG∗ always determines ZG and ZḠ, and vice versa. Consequently, for
n ≤ 11 vertices, knowing ZG∗ is equivalent to knowing Z(Ḡ)∗ . By analogy with the A-, L-, and
|L|-spectra, Corollary 3.3 suggests that ZG and ZḠ (at least almost) always determine ZG∗ , and
Table 5.4 suggests that ZG∗ almost always determines ZG and ZḠ. That is, we expect (M1) and
(M2) to be almost always equivalent, but there seems to be no reason to expect this is always
the case. Similarly, we have no reason to expect (M2) and (M4) always give the same results.
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Boston, Inc., Boston, MA, 2010. Reprint of the 1992 edition.
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