Review for Final Exam

1. If A is an invertible matrix $n \times n$ matrix, which of the following must be true?
(a) $\operatorname{det}(A)=1$.
(b) The columns of A are an orthogonal set of nonzero vectors in \mathbb{R}^{n}.
(c) 0 is not an eigenvalue of A.
(d) The reduced row echelon form of A is I_{n}.
(e) A is diagonalizable.
(f) The rows of A are a basis for \mathbb{R}_{n}.
(g) The linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $L(\mathbf{v})=A \mathbf{v}$ is one-to-one and onto.
2. Which of the following sets are subspaces of \mathbb{R}^{3} ?
(a) A line in \mathbb{R}^{3} which does not go through the origin.
(b) A plane through the origin in \mathbb{R}^{3}.
(c) The origin.
(d) A sphere of radius 1 in \mathbb{R}^{3} centered at the origin.
(e) A ball of radius 1 in \mathbb{R}^{3} centered at the origin (this is the sphere and its interior)
(f) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}5 \\ -1 \\ 2\end{array}\right]\right\}$
(g) The null space of a 4×3 matrix.
(h) The solutions to the linear system $A \mathbf{x}=\mathbf{b}$ where A is a fixed 3×3 matrix and \mathbf{b} is a fixed nonzero vector.
(i) The column space of a 3×5 matrix.
3. Let A be an $n \times n$ skew symmetric matrix.
(a) Prove that if n is odd, then A is not invertible. Hint: Use determinants.
(b) If n is even, can we determine if A is invertible? If yes, give a proof. If no, find examples which show it could be either invertible or non-invertible.
4. Let $A=\left[\begin{array}{ccccc}2 & 3 & 0 & 0 & -6 \\ 0 & 0 & 0 & 1 & 5 \\ -1 & 0 & 6 & 3 & 3 \\ 0 & 1 & 4 & 2 & 0\end{array}\right]$.
(a) Find the RREF of A.
(b) What are the rank and nullity of A ?
(c) Find a basis for the null space of A.
(d) Find a basis for the column space of A.
(e) Find a basis for the row space of A.
(f) Let $\mathbf{b}=\left[\begin{array}{c}-1 \\ 6 \\ -1 \\ -1\end{array}\right]$. Prove that $\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1 \\ 1\end{array}\right]$ is a solution to $A \mathbf{x}=\mathbf{b}$. Find all the solutions to $A \mathbf{x}=\mathbf{b}$.
5. Determine if the following statements are true or false. Give a proof or counterexample.
(a) If U and W are subspaces of a vector space V and $\operatorname{dim} U<\operatorname{dim} W$, then U is a subspace of W.
(b) If S is any orthonormal set in \mathbb{R}^{n}, then S is contained in an orthonormal basis for \mathbb{R}^{n}.
6. Let S be the following set of vectors in \mathbb{R}^{4}.

$$
S=\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0 \\
6
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
0 \\
6
\end{array}\right],\left[\begin{array}{c}
-7 \\
6 \\
0 \\
11
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right]\right\}
$$

(a) Find a subset of S which is a basis for span S.
(b) Does S contain a basis for \mathbb{R}^{4} ? Is S contained in a basis for \mathbb{R}^{4} ?
7. Fix a real number λ and a nonzero vector \mathbf{v} in \mathbb{R}^{n}. Determine if the following sets are subspaces of $M_{n n}$.
(a) The set of all $n \times n$ matrices with eigenvalue λ.
(b) The set of all $n \times n$ matrices with eigenvector \mathbf{v}.
8. Let $\mathbf{v}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]$. Let W be the subspace of \mathbb{R}^{4} consisting of vectors which are orthogonal to \mathbf{v}.
(a) Find a basis for W and $\operatorname{dim} W$.
(b) Find an orthonormal basis for W.
(c) Find an orthonormal basis for \mathbb{R}^{4} which contains the orthonormal basis for W you found in part (b).
9. Let P be an $n \times n$ matrix whose columns are an orthonormal set in \mathbb{R}^{n}. Show that $P^{-1}=P^{T}$.
10. Let A be a fixed $n \times n$ matrix. Define $L: M_{n n} \rightarrow M_{n n}$ to be $L(X)=A X-X A$.
(a) Prove that L is a linear transformation.
(b) Is L one-to-one? Is L onto?
11. Let $L: P_{3} \rightarrow M_{22}$ be the linear transformation $L\left(a t^{3}+b t^{2}+c t+d\right)=$ $\left[\begin{array}{ll}a-c & 2 c+d \\ b+d & 2 a-b\end{array}\right]$.
(a) Find bases for the kernel and range of L.
(b) Find the representation of L with respect to the bases $S=\left\{t^{3}, t^{2}, t, 1\right\}$ and $T=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right.$.
(c) Let $S^{\prime}=\left\{t^{3}, t^{3}-t^{2}, t^{3}+t^{2}-t, t^{3}+t^{2}+t-1\right\}$ and let

$$
T^{\prime}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right]\right.
$$

Find the representation of L with respect to S^{\prime} and T^{\prime} two different ways: directly and using transition matrices.
12. Let A and B be $n \times n$ matrices. Suppose there exists a basis S for \mathbb{R}^{n} such that all vectors in S are eigenvectors of both A and B. Prove that $A B=B A$.
13. Let $p(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\ldots+a_{2} t^{2}+a_{1} t+a_{0}$ be a polynomial. Let A be an $n \times n$ matrix. Define $p(A)$ to be the $n \times n$ matrix $a_{n} A^{n}+a_{n-1} A^{n-1}+\ldots+a_{2} A^{2}+$ $a_{1} A+a_{0} I$. If \mathbf{v} is an eigenvector of A with associated eigenvalue λ, prove that \mathbf{v} is an eigenvalue of $p(A)$ with associated eigenvalue $p(\lambda)$.
14. Let $\mathbf{v}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$.
(a) Which of the following matrices have \mathbf{v} as an eigenvector? For those that do have \mathbf{v} as an eigenvector, find the associated eigenvalue.

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
1 & -1 & 1 & -1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
9 & 2 & -1 & 0 \\
5 & 0 & 0 & 5 \\
8 & -7 & 6 & 3
\end{array}\right]
$$

(b) Find an example of matrix which has \mathbf{v} as an eigenvector with associated eigenvalue 4.
(c) Describe the matrices which have \mathbf{v} as an eigenvector.
15. Let $L: P_{1} \rightarrow P_{1}$ be the linear transformation given by $L(a t+b)=(2 a+b) t-a$.
(a) Is L invertible? If yes, what is L^{-1} ?
(b) Find the eigenvalues and eigenvectors of L.
(c) Is L diagonalizable? If yes, find a basis S for P_{1} for which the representation of L with respect to S is diagonal.
16. For each matrix A, find its eigenvalues and a basis for the associated eigenspaces.
(a) $A=\left[\begin{array}{ccc}2 & -6 & 1 \\ 0 & -1 & 0 \\ -2 & 4 & -1\end{array}\right]$
(c) $A=\left[\begin{array}{llll}4 & 2 & 0 & 0 \\ 3 & 3 & 0 & 0 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 0 & 2\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ -2 & 3 & -2 \\ 2 & 0 & 5\end{array}\right]$
17. For each of the matrices in the previous problem, determine if A is diagonalizable. If it is diagonalizable, find a diagonal matrix D and an invertible matrix P such that $D=P^{-1} A P$ and find A^{100}.

