Review for Final Exam

- 1. If A is an invertible matrix $n \times n$ matrix, which of the following must be true?
 - (a) $\det(A) = 1$.
 - (b) The columns of A are an orthogonal set of nonzero vectors in \mathbb{R}^n .
 - (c) 0 is not an eigenvalue of A.
 - (d) The reduced row echelon form of A is I_n .
 - (e) A is diagonalizable.
 - (f) The rows of A are a basis for \mathbb{R}_n .
 - (g) The linear transformation $L : \mathbb{R}^n \to \mathbb{R}^n$ given by $L(\mathbf{v}) = A\mathbf{v}$ is one-to-one and onto.
- 2. Which of the following sets are subspaces of \mathbb{R}^3 ?
 - (a) A line in \mathbb{R}^3 which does not go through the origin.
 - (b) A plane through the origin in \mathbb{R}^3 .
 - (c) The origin.
 - (d) A sphere of radius 1 in \mathbb{R}^3 centered at the origin.
 - (e) A ball of radius 1 in \mathbb{R}^3 centered at the origin (this is the sphere and its interior)
 - (f) $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 5\\-1\\2 \end{bmatrix} \right\}$
 - (g) The null space of a 4×3 matrix.
 - (h) The solutions to the linear system $A\mathbf{x} = \mathbf{b}$ where A is a fixed 3×3 matrix and **b** is a fixed nonzero vector.
 - (i) The column space of a 3×5 matrix.
- 3. Let A be an $n \times n$ skew symmetric matrix.
 - (a) Prove that if n is odd, then A is not invertible. Hint: Use determinants.
 - (b) If n is even, can we determine if A is invertible? If yes, give a proof. If no, find examples which show it could be either invertible or non-invertible.

4. Let $A = \begin{bmatrix} 2 & 3 & 0 & 0 & -6 \\ 0 & 0 & 0 & 1 & 5 \\ -1 & 0 & 6 & 3 & 3 \\ 0 & 1 & 4 & 2 & 0 \end{bmatrix}$.

- (a) Find the RREF of A.
- (b) What are the rank and nullity of A?
- (c) Find a basis for the null space of A.
- (d) Find a basis for the column space of A.
- (e) Find a basis for the row space of A.

(f) Let
$$\mathbf{b} = \begin{bmatrix} -1\\ 6\\ -1\\ -1 \\ -1 \end{bmatrix}$$
. Prove that $\begin{bmatrix} 1\\ 1\\ -1\\ 1\\ 1 \\ 1 \end{bmatrix}$ is a solution to $A\mathbf{x} = \mathbf{b}$. Find all the solutions to $A\mathbf{x} = \mathbf{b}$.

- 5. Determine if the following statements are true or false. Give a proof or counterexample.
 - (a) If U and W are subspaces of a vector space V and $\dim U < \dim W$, then U is a subspace of W.
 - (b) If S is any orthonormal set in \mathbb{R}^n , then S is contained in an orthonormal basis for \mathbb{R}^n .
- 6. Let S be the following set of vectors in \mathbb{R}^4 .

$$S = \left\{ \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\6 \end{bmatrix}, \begin{bmatrix} 3\\1\\0\\6 \end{bmatrix}, \begin{bmatrix} -7\\6\\0\\11 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix} \right\}$$

- (a) Find a subset of S which is a basis for span S.
- (b) Does S contain a basis for \mathbb{R}^4 ? Is S contained in a basis for \mathbb{R}^4 ?
- 7. Fix a real number λ and a nonzero vector \mathbf{v} in \mathbb{R}^n . Determine if the following sets are subspaces of M_{nn} .
 - (a) The set of all $n \times n$ matrices with eigenvalue λ .
 - (b) The set of all $n \times n$ matrices with eigenvector **v**.

8. Let $\mathbf{v} = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$. Let W be the subspace of \mathbb{R}^4 consisting of vectors which are

orthogonal $\overline{to} \mathbf{v}$.

- (a) Find a basis for W and dim W.
- (b) Find an orthonormal basis for W.
- (c) Find an orthonormal basis for \mathbb{R}^4 which contains the orthonormal basis for W you found in part (b).
- 9. Let P be an $n \times n$ matrix whose columns are an orthonormal set in \mathbb{R}^n . Show that $P^{-1} = P^T$.
- 10. Let A be a fixed $n \times n$ matrix. Define $L: M_{nn} \to M_{nn}$ to be L(X) = AX XA.
 - (a) Prove that L is a linear transformation.
 - (b) Is L one-to-one? Is L onto?
- 11. Let $L : P_3 \rightarrow M_{22}$ be the linear transformation $L(at^3 + bt^2 + ct + d) =$ $\begin{bmatrix} a-c & 2c+d \\ b+d & 2a-b \end{bmatrix}.$
 - (a) Find bases for the kernel and range of L.
 - (b) Find the representation of L with respect to the bases $S = \{t^3, t^2, t, 1\}$ and $T = \{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$ (c) Let $S' = \{t^3, t^3 - t^2, t^3 + t^2 - t, t^3 + t^2 + t - 1\}$ and let

$$T' = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

Find the representation of L with respect to S' and T' two different ways: directly and using transition matrices.

- 12. Let A and B be $n \times n$ matrices. Suppose there exists a basis S for \mathbb{R}^n such that all vectors in S are eigenvectors of both A and B. Prove that AB = BA.
- 13. Let $p(t) = a_n t^n + a_{n-1} t^{n-1} + ... + a_2 t^2 + a_1 t + a_0$ be a polynomial. Let A be an $n \times n$ matrix. Define p(A) to be the $n \times n$ matrix $a_n A^n + a_{n-1} A^{n-1} + \ldots + a_2 A^2 + \ldots + a_n A^n + a_{n-1} A^{n-1} + \ldots + a_n A^n + a$ $a_1A + a_0I$. If v is an eigenvector of A with associated eigenvalue λ , prove that **v** is an eigenvalue of p(A) with associated eigenvalue $p(\lambda)$.

14. Let $\mathbf{v} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$.

(a) Which of the following matrices have **v** as an eigenvector? For those that do have **v** as an eigenvector, find the associated eigenvalue.

[1	0	0	-1		[1	1	1	1		[1	2	3	4]
0	1	0	-1		0	1	1	1		9	2	-1	0
0	0	1	-1	,	0	0	1	1	,	5	0	0	5
1	-1	1	-1		0	0	0	1		8	-7	6	3

- (b) Find an example of matrix which has **v** as an eigenvector with associated eigenvalue 4.
- (c) Describe the matrices which have \mathbf{v} as an eigenvector.
- 15. Let $L: P_1 \to P_1$ be the linear transformation given by L(at+b) = (2a+b)t a.
 - (a) Is L invertible? If yes, what is L^{-1} ?
 - (b) Find the eigenvalues and eigenvectors of L.
 - (c) Is L diagonalizable? If yes, find a basis S for P_1 for which the representation of L with respect to S is diagonal.
- 16. For each matrix A, find its eigenvalues and a basis for the associated eigenspaces.

(a)
$$A = \begin{bmatrix} 2 & -6 & 1 \\ 0 & -1 & 0 \\ -2 & 4 & -1 \end{bmatrix}$$
 (c) $A = \begin{bmatrix} 4 & 2 & 0 & 0 \\ 3 & 3 & 0 & 0 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 0 & 2 \end{bmatrix}$
(b) $A = \begin{bmatrix} 3 & 0 & 0 \\ -2 & 3 & -2 \\ 2 & 0 & 5 \end{bmatrix}$

17. For each of the matrices in the previous problem, determine if A is diagonalizable. If it is diagonalizable, find a diagonal matrix D and an invertible matrix P such that $D = P^{-1}AP$ and find A^{100} .