
Review for Exam 3

1. Let V be a 3-dimensional vector space with bases S and T . Let v be a vector

such that [v]T =

1
2
3

. Find [v]S if PS←T =

1 0 1
0 −1 1
0 2 0

.

Using the formula that [v]S = PS←T [v]T we get that [v]S =

1 0 1
0 −1 1
0 2 0

1
2
3

 =4
1
4

.

2. P2 has basis S = {1, t, t2 + t−2}. Find a basis T for P2 such that the transition

matrix from T to S is

1 2 0
0 1 0
1 3 −1

.

Let T = {w1,w2,w3}. The transition matrix has i-th column equal to [wi]S.

Hence [w1]S =

1
0
1

 so w1 = 1(1) + 0(t) + 1(t2 + t− 2) = t2 + t− 1. Similarly

w2 = 2(1)+1(t)+3(t2+t−2) = 3t2+4t−4 and w3 = 0(1)+0(t)−1(t2+t−2) =
−t2 − t + 2 so T = {t2 + t− 1, 3t2 + 4t− 4,−t2 − t + 2}.

3. Let V = R4 and let S and T be the bases S =




1
0
0
0

 ,


0
2
0
0

 ,


0
0
3
0

 ,


0
0
0
4


 and

T =




1
0
0
0

 ,


1
2
0
0

 ,


1
2
3
0

 ,


1
2
3
4


.

(a) Find QT←S and PS←T .

Start with PS←T . To find the columns of P , we need to take each vec-
tor from T and find its coordinate vector with respect to S. For the
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first vector, write


1
0
0
0

 = x


1
0
0
0

 + y


0
2
0
0

 + z


0
0
3
0

 + w


0
0
0
4

. This is the

linear system x = 1, 2y = 0, 3z = 0, 4w = 0 so the solution is x =

1, y = 0, z = 0, w = 0 and the coordinate vector is


1
0
0
0

. For the sec-

ond, write


1
2
0
0

 = x


1
0
0
0

 + y


0
2
0
0

 + z


0
0
3
0

 + w


0
0
0
4

. This has solution

x = 1, y = 1, z = 0, w = 0 so the coordinate is


1
1
0
0

. For the third

vector,


1
2
3
0

 = x


1
0
0
0

 + y


0
2
0
0

 + z


0
0
3
0

 + w


0
0
0
4

. This has solution x =

1, y = 1, z = 1, w = 0 so the coordinate is


1
1
1
0

. Finally, the fourth

vector is


1
2
3
4

 = x


1
0
0
0

 + y


0
2
0
0

 + z


0
0
3
0

 + w


0
0
0
4

. This has solution

x = 1, y = 1, z = 1, w = 1 so the coordinate is


1
1
1
1

. These are the

columns transition matrix, so PS←T =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

.

For QT←S we do the same process but switch the roles of S and T . To
find the columns of Q, we need to take each vector from S and find its
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coordinate vector with respect to T . For the first vector, write


1
0
0
0

 =

x


1
0
0
0

 + y


1
2
0
0

 + z


1
2
3
0

 + w


1
2
3
4

. This is the linear system x + y +

z + w = 1, 2y + 2z + 2w = 0, 3z + 3w = 0, 4w = 0 so the solution is

x = 1, y = 0, z = 0, w = 0 and the coordinate vector is


1
0
0
0

. For the

second, write


0
2
0
0

 = x


1
0
0
0

 + y


1
2
0
0

 + z


1
2
3
0

 + w


1
2
3
4

. This has solu-

tion x = −1, y = 1, z = 0, w = 0 so the coordinate is


−1
1
0
0

. For the

third vector,


0
0
3
0

 = x


1
0
0
0

 + y


1
2
0
0

 + z


1
2
3
0

 + w


1
2
3
4

. This has solution

x = 0, y = −1, z = 1, w = 0 so the coordinate is


0
−1
1
0

. Finally, the

fourth vector is


0
0
0
4

 = x


1
0
0
0

+ y


1
2
0
0

+ z


1
2
3
0

+w


1
2
3
4

. This has solution

x = 0, y = 0, z = −1, w = 1 so the coordinate is


0
0
−1
1

. These are the

columns transition matrix, so QT←S =


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1

.
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Alternatively, you can compute QT←S by taking the inverse of PS←T .

(b) Compute QT←SPS←T .

These matrices are inverses, their product is I4, the 4× 4 identity.

(c) Let v =


4
4
4
4

. Find [v]S and [v]T .

To find [v]S, set


4
4
4
4

 = x


1
0
0
0

+y


0
2
0
0

+ z


0
0
3
0

+w


0
0
0
4

. This has solution

x = 4, y = 2, z = 4/3, w = 1 so [v]S =


4
2

4/3
1

.

To find [v]T , set


4
4
4
4

 = x


1
0
0
0

+y


1
2
0
0

+z


1
2
3
0

+w


1
2
3
4

. This has solution

x = 2, y = 2/3, z = 1/3, w = 1 so [v]T =


2

2/3
1/3
1

.

(d) Confirm that [v]S = PS←T [v]T and [v]T = QT←S[v]S.

PS←T [v]T =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1




2
2/3
1/3
1

 =


4
2

4/3
1

 = [v]S

QT←S[v]S =


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1




4
2

4/3
1

 =


2

2/3
1/3
1

 = [v]T

4. Prove that the diagonals of a parallelogram are perpendicular if and only if the
parallelogram is a rhombus.
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Hint: Take u and v to be vectors starting at the same point which give 2 ad-
jacent sides of the parallelogram. Write down formulas for the diagonals in
terms of the vectors u and v. Use dot products to show that the diagonals are
perpendicular if and only if u and v are the same length.

The two diagonals are u+v and u−v. To check when the diagonals are perpen-
dicular, we take the dot product of these two vectors and see when it is 0. Using
properties of dot product we get (u+v) · (u−v) = u ·u−u ·v+v ·u−v ·v =
u · u− v · v. The diagonals are perpendicular if and only if this is 0, so if and
only if u ·u = v ·v. These are both positive numbers, so this is true if and only
if
√
u · u =

√
v · v which is the same as ‖u‖ = ‖v‖. Two adjacent sides of the

parallelogram are the same length if and only if the parallelogram is a rhombus.

5. Let S =


−3

0
1

 ,

−5
−5
5

. Let V = span S.

(a) Find an orthogonal basis T for V .

Label the vectors in S as u1 =

−3
0
1

 ,u2 =

−5
−5
5

 and the vectors in T will

be v1,v2. Using the Gram-Schmidt process we get that v1 = u1 =

−3
0
1


and v2 = u2 − (v1,u2)

(v1,v1)
v1 =

−5
−5
5

 − 20
10

−3
0
1

 =

 1
−5
3

. The resulting

orthogonal basis is T =


−3

0
1

 ,

 1
−5
3

.

(b) Find a vector in R3 which is orthogonal to both vectors in S.

If

ab
c

 is orthogonal to both vectors in S then 0 =

ab
c

 ·
−3

0
1

 = −3a+ c

and 0 =

ab
c

·
−5
−5
5

 = −5a−5b+5c. We are therefore looking for solutions

to the homogeneous linear system −3a + c = 0,−5a − 5b + 5c = 0. The
solutions to this are that a can be anything, b = 2a, c = 3a. Any vector of
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the form

 a
2a
3a

 is orthogonal to both vectors in S, so one possible answer

is

1
2
3

.

(c) If possible, find an orthogonal basis for R3 which contains T .

There are two vectors in T and any basis for R3 contains 3 vectors, so we
need to find 1 vector to add to T . The vector we add must be orthogonal
to both vectors in T . The vector we found in part (b) is orthogonal to
both vectors in S and thus to all vectors in V , including those in T (we
can also verify directly that it is orthogonal to the vectors in T ). The

other two vectors in T are orthogonal, so the set


−3

0
1

 ,

 1
−5
3

 ,

1
2
3


is orthogonal and contains T . This set is linearly independent because any
orthogonal set of nonzero vectors is linearly independent. It is therefore a
basis because any set of three linearly independent vectors in R3 is a basis

for R3. The set


−3

0
1

 ,

 1
−5
3

 ,

1
2
3

 is therefore an orthogonal basis

for R3 which contains T .

6. Let S be the basis S =




1
2
0
−1

 ,


0
3
1
0

 ,


2
5
1
0

 ,


1
1
4
0


. S is a basis for R4.

(a) Use the Gram-Schmidt process to transform S into an orthonormal basis
for R4.

Label the vectors in S as u1,u2,u3,u4. We start by building an orthogonal
basis which we will label v1,v2,v3,v4. Using the Gram-Schmidt formulas,
we get that the vectors in T are:

v1 = u1 =


1
2
0
−1
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v2 = u2 −
v1 · u2

v1 · v1

v1 =


0
3
1
0

− 6

6


1
2
0
−1

 =


−1
1
1
1



v3 = u3 −
v1 · u3

v1 · v1

v1 −
v2 · u3

v2 · v2

v2 =


2
5
1
0

− 12

6


1
2
0
−1

− 4

4


−1
1
1
1

 =


1
0
0
1


v4 = u4 −

v1 · u4

v1 · v1

v1 −
v2 · u4

v2 · v2

v2 −
v3 · u4

v3 · v3

v3

=


1
1
4
0

− 3

6


1
2
0
−1

− 4

4


−1
1
1
1

− 1

2


1
0
0
1

 =


1
−1
3
−1



The resulting orthogonal basis is




1
2
0
−1

 ,


−1
1
1
1

 ,


1
0
0
1

 ,


1
−1
3
−1


.

To get an orthonormal basis, divide each vector by its length. The result-

ing orthonormal basis is




1/
√

6

2/
√

6
0

−1/
√

6

 ,


−1/2
1/2
1/2
1/2

 ,


1/
√

2
0
0

1/
√

2

 ,


1/
√

12

−1/
√

12

3/
√

12

−1/
√

12


.

(b) Write the vector


7
−2
1
4

 as a linear combination of the vectors in the basis

from part (a).

If v =


7
−2
1
4

 = a1v1 + a2v2 + a3v3 + a4v4, then ai = vi · v. Thus

a1 =


1/
√

6

2/
√

6
0

−1/
√

6

·


7
−2
1
4

 = − 1√
6
, a2 =


−1/2
1/2
1/2
1/2

·


7
−2
1
4

 = −2, a3 =


1/
√

2
0
0

1/
√

2

·

7




7
−2
1
4

 = 11√
2
, a4 =


1/
√

12

−1/
√

12

3/
√

12

−1/
√

12

 ·


7
−2
1
4

 = 8√
12

. Therefore


7
−2
1
4

 = − 1√
6


1/
√

6

2/
√

6
0

−1/
√

6

− 2


−1/2
1/2
1/2
1/2

+
11√

2


1/
√

2
0
0

1/
√

2

+
8√
12


1/
√

12

−1/
√

12

3/
√

12

−1/
√

12

 .

7. Let S = {v1,v2, ...,vk} be an orthonormal set of vectors in Rn. Let L : Rn → Rk

be the function L(u) =


u · v1

u · v2
...

u · vk

.

(a) Prove that L is a linear transformation.

Let u and w be vectors in Rn. Using the properties of dot product,

L(u+w) =


(u + w) · v1

(u + w) · v2
...

(u + w) · vk

 =


u · v1 + w · v1

u · v2 + w · v2
...

u · vk + w · vk

 =


u · v1

u · v2
...

u · vk

+


w · v1

w · v2
...

w · vk

 =

L(u) + L(w). Also L(ru) =


(ru) · v1

(ru) · v2
...

(ru) · vk

 =


r(u · v1)
r(u · v2)

...
r(u · vk)

 = r


u · v1

u · v2
...

u · vk

 =

rL(u).

(b) Find dim kerL and dim range L.

Start with the range. As S is orthonormal, L(v1) =


v1 · v1

v1 · v2
...

v1 · vk

 =


1
0
...
0

.

Similarly, L(v2) =


0
1
0
...
0

, ..., L(vk) =


0
0
...
0
1

. We see that the set {L(v1), ..., L(vk)}
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is the standard basis for Rk. These vectors are all in the range as they
are L applied to a vector in Rn. The range of L is a subspace of Rk

which contains the standard basis for Rk, so it must be all of Rk. Thus
dim range L = k.

The dimension of the kernel can be gotten using the formula that dim kerL+
dim range L = dimRn, so dim kerL = n− k.

(c) Let W be the set of vectors w in Rn such that w·vi = 0 for all i = 1, 2, .., k.
Prove that W is a subspace of Rn of dimension n− k.

W is the kernel of L. We proved that kernels of linear transformations are
always subspaces of the starting space, hence W is a subspace of Rn and
from the previous part we know that it has dimension n− k.

(d) Assume k < n. Let T = {w1,w2, ...,wn−k} be an orthonormal basis for W .
Prove that the set R = {v1,v2, ...,vk,w1,w2, ...,wn−k} is an orthonormal
basis for Rn.

Start by showing that R is orthonormal. We know that vi · vj = 0 for
i 6= j by the orthogonality of S. Similarly, wi · wj = 0 for i 6= j by the
orthogonality of T . Also vi ·wj = 0 for all i, j as the vector wj is in W and
the vectors in W are orthogonal to vi. Thus any possible pair of distinct
vectors chosen from R will be orthogonal, so R is orthogonal. Also, the
vectors are all length 1 as they are taken from S and T which are orthonor-
mal sets. This shows that R is an orthonormal set.

Any orthonormal set of vectors in Rn is linearly independent (as it is or-
thogonal and all vectors are nonzero since they are length 1). There are n
vectors in R, so R is a basis for Rn.

8. Which of the following maps are linear transformations?

(a) L : R3 → R2 defined by L

ab
c

 =

[
ab− c
c + 5a

]
.

This is not a linear transformation. It does not satisfy either of the proper-

ties of linear transformations. For example, L

r

ab
c

 = L

rarb
rc

 =
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[
r2ab− rc
rc + 5ra

]
and rL

ab
c

 = r

[
ab− c
c + 5a

]
=

[
rab− c
rc + 5ra

]
. These are not

equal so the property L(rv) = rL(v) is not satisfied.

(b) L : P5 → R defined by L(p(t)) =
∫ 1

0
p(t) dt.

L is a linear transformation. If p(t) and q(t) are two polynomials in

P5 and r is a real number, then L(p(t) + q(t)) =
∫ 1

0
p(t) + q(t) dt =∫ 1

0
p(t) dt +

∫ 1

0
q(t) dt = L(p(t)) + L(q(t)) and L(rp(t)) =

∫ 1

0
rp(t) dt =

r
∫ 1

0
p(t) dt = rL(p(t)).

9. Let L : R4 → P2 be the linear transformation given by

L



a
b
c
d


 = (a− b)t2 + (c + a)t + (b + c)

(a) Find a basis for the kernel of L.

The kernel of L is the subspace of R4 of vectors which whose image under

L is 0. If


a
b
c
d

 is in the kernel of L then a − b = 0, c + a = 0, b + c = 0.

The first two equations tell us that b = a and c = −a and thus the last
equation b + c = 0 is automatically satisfied. There is no restriction on

the variable d so we get that kerL =




a
a
−a
d


 =

a


1
1
−1
0

+ d


0
0
0
1


 =

span




1
1
−1
0

 ,


0
0
0
1


. The two vectors are linearly independent so this is

a two dimensional vector space with basis




1
1
−1
0

 ,


0
0
0
1


.

(b) Find a basis for the range of L.
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The range of L is all vectors in P2 of the form (a−b)t2 +(c+a)t+(b+c) =
a(t2+t)+b(−t2+1)+c(t+1) so the range of L is span{t2+t,−t2+1, t+1}.
These three vectors are not linearly independent as the third one is the sum
of the first two so we can delete the third vector without changing the span.
Therefore range L = span{t2+t,−t2+1, t+1} = span{t2+t,−t2+1}. These
two vectors are linearly independent so range of L has basis {t2+t,−t2+1}.

Note that we found that both kernel and range of L were dimension 2. A
good way to double check these dimensions is to check that they satisfy
the equation dim kerL + dim range L = dimR4.

(c) Is L one-to-one? Onto? Invertible?

The dimension of the kernel is 2 so the kernel is not just the zero vector
and L is not one-to-one. The range has dimension 2 and P2 has dimension
3 so the range is not all of P2 and L is not onto. For L to be invertible, it
must be both one-to-one and onto but it is neither so it is not invertible.

10. Let L : V → V be a linear transformation. Let S = {v1,v2,v3} be a basis for
V . Suppose we know the following:

L(v1) = v1 + v3

L(v2) = v1 + 2v2 + 3v3

L(v3) = 2v3

(a) Find L(2v1 − v2).

Using the properties of linear transformations, L(2v1 − v2) = 2L(v1) −
L(v2) = 2(v1 + v3)− (v1 + 2v2 + 3v3) = v1 − 2v2 − v3.

(b) Find the representation of L with respect to S.

From the three equations given in the problem, [L(v1)]S =

1
0
1

, [L(v2)]S =1
2
3

, and [L(v3)]S =

0
0
2

. Hence the representation with respect to S is1 1 0
0 2 0
1 3 2

.
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(c) Prove that L is invertible and find L−1(v3).

The easiest way to show L is invertible is to show that the representation
of L found in part (b) is an invertible matrix. The determinant of this
matrix 4 (nonzero), so it is invertible and so is L.

One way find L−1(v3) is to apply L−1 to both sides of the equation
L(v3) = 2v3. This gives that v3 = L−1(2v3) = 2L−1(v3). Dividing
by 2 we get that L−1(v3) = 1

2
v3.

The other way to do this is to find the inverse of the representation found

in part (b). The inverse of that matrix is

 1 −1/2 0
0 1/2 0
−1/2 −1/2 1/2

. This is the

representation of L−1 with respect to S so [L−1(v3)]S =

 1 −1/2 0
0 1/2 0
−1/2 −1/2 1/2

 [v3]S = 1 −1/2 0
0 1/2 0
−1/2 −1/2 1/2

0
0
1

 =

 0
0

1/2

 so L−1(v3) = 0v1 + 0v2 + 1
2
v3 = 1

2
v3.

11. Let V and W be finite dimensional real vector spaces and let L : V → W be a
linear transformation. Circle the correct answer to the following two multiple
choice questions.

(a) If L is one-to-one, what can we say about dim(V ) and dim(W )?

dim(V ) ≤ dim(W )

L is one-to-one so dim kerL = 0 so the equation dim kerL+dim range L =
dimV becomes dim range L = dimV . But the range of L is a subspace
of W so it has dimension less than or equal to the dimension of W , so
dimV = dim range L ≤ dimW .

(b) If L is onto, what can we say about dim(V ) and dim(W )?

dim(V ) ≥ dim(W )

L is onto so dim range L = dimW so the equation dim kerL+dim range L =
dimV becomes dim kerL+dimW = dimV and as dim kerL ≥ 0 this shows
dimV ≥ dimW .
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12. Let L : P2 → P2 be the linear transformation L(p(t)) = tp′(t) + p(0).

(a) Find the matrix representing L with respect to the basis {t2, t, 1}.

First find L evaluated at each basis element. L(t2) = 2t2, L(t) = t, L(1) =
1. The coordinate vectors of 2t2, t, 1 with respect to the given basis are2

0
0

 ,

0
1
0

 ,

0
0
1

 respectively. These are the columns of the matrix repre-

senting L with respect to the given basis so the matrix is

2 0 0
0 1 0
0 0 1

.

(b) Is L invertible? If yes, what is L−1(4t2 − t + 3)?

L is invertible because the matrix representing L is invertible. The matrix
representing L−1 with respect to the basis {t2, t, 1} will be the inverse of

the matrix in part b which is

1/2 0 0
0 1 0
0 0 1

. The vector 4t2 − t + 3 has

coordinate vector

 4
−1
3

 so L−1(4t2 − t + 3) will have coordinate vector1/2 0 0
0 1 0
0 0 1

 4
−1
3

 =

 2
−1
3

 so L−1(4t2 − t + 3) = 2t2 − t + 3.

Note: This problem can also be done by first rewriting L(p(t)) = tp′(t) +
p(0) as L(at2 + bt + c) = 2at2 + bt + c.

13. Let L : R2 → R3 be the linear transformation defined by L

([
x
y

])
=

 x− y
2y

y − 3x

.

Let S be the standard basis for R2 and S ′ =

{[
1
2

]
,

[
0
−1

]}
. Let T be the stan-

dard basis for R3 and T ′ =


1

1
0

 ,

1
2
1

 ,

0
0
2

.

(a) Find the representation of L with respect to

i. S and T
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We first plug the vectors of S into L. L

([
1
0

])
=

 1
0
−3

 and L

([
0
1

])
=−1

2
1

. As T is the standard basis, taking the coordinate vectors with

respect to T will not change these vectors so the representation is 1 −1
0 2
−3 1

.

ii. S ′ and T

We start by plugging the vectors in S ′ into L. L

([
1
2

])
=

−1
4
−1

 and

L

([
0
−1

])
=

 1
−2
−1

. As T is the standard basis, taking the coordinate

vector with respect to T does not change the vector so the matrix we

get is

−1 1
4 −2
−1 −1

.

iii. S and T ′

As in the first part, if we plug the vectors of S into L we get L

([
1
0

])
= 1

0
−3

 and L

([
0
1

])
=

−1
2
1

. We now need to find the coordinate

vectors of each of these with respect to T ′. To find the coordinate

vector of

 1
0
−3

 we need to find x, y, z such that

 1
0
−3

 = x

1
1
0

 +

y

1
2
1

 + z

0
0
2

. In other words, we are trying to solve the system of

linear equations x + y = 1, x + 2y = 0, y + 2z = −3. The solution is
x = 2, y = −1, z = −1 so the coordinate vector with respect to T ′ is 2
−1
−1

. Similarly, to find the coordinate vector of

−1
2
1

 we’re solving

the linear system x + y = −1, x + 2y = 2, y + 2z = 1. The solution
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is x = −4, y = 3, z = −1 so the coordinate vector is

−4
3
−1

. Putting

together these two columns we get that the representation with respect

to S and T ′ is

 2 −4
−1 3
−1 −1

.

iv. S ′ and T ′

As in the second part, if we plug the vectors of S ′ into L we get

L

([
1
2

])
=

−1
4
−1

 and L

([
0
−1

])
=

 1
−2
−1

. We now need to find

the coordinate vectors of each of these with respect to T ′. To find

the coordinate vector of

−1
4
−1

 we need to solve the system of linear

equations x + y = −1, x + 2y = 4, y + 2z = −1. The solution is
x = −6, y = 5, z = −3 so the coordinate vector with respect to T ′ is 6

5
−3

. Similarly, to find the coordinate vector of

 1
−2
−1

 we’re solving

the linear equation x+ y = 1, x+ 2y = −2, y + 2z = −1. The solution

is x = 4, y = −3, z = 1 so the coordinate vector is

 4
−3
1

. Putting

together these two columns we get that the representation with respect

to S ′ and T ′ is

−6 4
5 −3
−3 1

.

(b) Find the transition matrix

i. P from S ′ to S

To find the columns of P , we need to find the S coordinate vectors of
each of the vectors in S ′. As S is the standard basis, the coordinate
vectors are the same as the original vectors so P is just the matrix

with columns equal to the vectors in S ′. So P =

[
1 0
2 −1

]
.

ii. P−1 from S to S ′

We can either compute this by inverting P from the previous part
or we can directly compute the transition matrix from S to S ′. To
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compute this directly, we need to take each of the vectors in S and
find their coordinate vectors with respect to S ′. To find the coor-

dinate vector of

[
1
0

]
with respect to S ′ we need to find x, y such

that

[
1
0

]
= x

[
1
2

]
+ y

[
0
−1

]
. So we are solving the linear system

x = 1, 2x− y = 0 which has solution x = 1, y = 2. To find the coordi-

nate vector of

[
0
1

]
we need to solve the linear system x = 0, 2x−y = 1

which has solution x = 0, y = −1. Putting the coordinate vectors in

as the columns of P−1 we get that P−1 =

[
1 0
2 −1

]
. As a check, you

can verify that PP−1 = I2. Coincidentally in this case it turns out
that P = P−1.

iii. Q from T ′ to T

To find Q we need to take the vectors in T ′ and find their coordinate
vectors with respect to T . T is the standard basis so the coordinate
vectors are the same as the original vectors and Q is the matrix whose

columns are the vectors of T ′, Q =

1 1 0
1 2 0
0 1 2

.

iv. Q−1 from T to T ′

We can either invert the matrix Q from the previous part or com-
pute this directly by finding the T ′ coordinate vector of each of the

vectors in T . To find the coordinate vector of

1
0
0

 with respect to

T ′ we need to solve the system x + y = 1, x + 2y = 0, y + 2z = 0.
The solution is x = 2, y = −1, z = 1/2 so the coordinate vector is 2
−1
1/2

. To find the coordinate vector of

0
1
0

 with respect to T ′ we

need to solve the system x + y = 0, x + 2y = 1, y + 2z = 0. The solu-

tion is x = −1, y = 1, z = −1/2 so the coordinate vector is

 −1
1
−1/2

.

To find the coordinate vector of

0
0
1

 with respect to T ′ we need to
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solve the system x + y = 0, x + 2y = 0, y + 2z = 1. The solution is

x = 0, y = 0, z = 1/2 so the coordinate vector is

 0
0

1/2

. Putting these

together we get that Q−1 =

 2 −1 0
−1 1 0
1/2 −1/2 1/2

. We can check that

QQ−1 = I3.

(c) Let A be the representation of L with respect to S and T . Compute AP ,
Q−1A, and Q−1AP . How to these compare to the other representations
you found?

AP =

 1 −1
0 2
−3 1

[1 0
2 −1

]
=

−1 1
4 −2
−1 −1


Q−1A =

 2 −1 0
−1 1 0
1/2 −1/2 1/2

 1 −1
0 2
−3 1

 =

 2 −4
−1 3
−1 −1


Q−1AP =

 2 −1 0
−1 1 0
1/2 −1/2 1/2

 1 −1
0 2
−3 1

[1 0
2 −1

]
=

−6 4
5 −3
−3 1

.

These are the same as the other three representations we found.
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