Review for Exam 3

1. Let V be a 3 -dimensional vector space with bases S and T. Let \mathbf{v} be a vector such that $[\mathbf{v}]_{T}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Find $[\mathbf{v}]_{S}$ if $P_{S \leftarrow T}=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 2 & 0\end{array}\right]$.
2. P_{2} has basis $S=\left\{1, t, t^{2}+t-2\right\}$. Find a basis T for P_{2} such that the transition matrix from T to S is $\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & 0 \\ 1 & 3 & -1\end{array}\right]$.
3. Let $V=\mathbb{R}^{4}$ and let S and T be the bases $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 4\end{array}\right]\right\}$ and $T=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]\right\}$.
(a) Find $Q_{T \leftarrow S}$ and $P_{S \leftarrow T}$.
(b) Compute $Q_{T \leftarrow S} P_{S \leftarrow T}$.
(c) Let $\mathbf{v}=\left[\begin{array}{l}4 \\ 4 \\ 4 \\ 4\end{array}\right]$. Find $[\mathbf{v}]_{S}$ and $[\mathbf{v}]_{T}$.
(d) Confirm that $[\mathbf{v}]_{S}=P_{S \leftarrow T}[\mathbf{v}]_{T}$ and $[\mathbf{v}]_{T}=Q_{T \leftarrow S}[\mathbf{v}]_{S}$.
4. Prove that the diagonals of a parallelogram are perpendicular if and only if the parallelogram is a rhombus.

Hint: Take \mathbf{u} and \mathbf{v} to be vectors starting at the same point which give 2 adjacent sides of the parallelogram. Write down formulas for the diagonals in terms of the vectors \mathbf{u} and \mathbf{v}. Use dot products to show that the diagonals are perpendicular if and only if \mathbf{u} and \mathbf{v} are the same length.
5. Let $S=\left\{\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-5 \\ -5 \\ 5\end{array}\right]\right\}$. Let $V=\operatorname{span} S$.
(a) Find an orthogonal basis T for V.
(b) Find a vector in \mathbb{R}^{3} which is orthogonal to both vectors in S.
(c) If possible, find an orthogonal basis for \mathbb{R}^{3} which contains T.
6. Let S be the basis $S=\left\{\left[\begin{array}{c}1 \\ 2 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 4 \\ 0\end{array}\right]\right\} . S$ is a basis for \mathbb{R}^{4}.
(a) Use the Gram-Schmidt process to transform S into an orthonormal basis for \mathbb{R}^{4}.
(b) Write the vector $\left[\begin{array}{c}7 \\ -2 \\ 1 \\ 4\end{array}\right]$ as a linear combination of the vectors in the basis from part (a).
7. Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be an orthonormal set of vectors in \mathbb{R}^{n}. Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be the function $L(\mathbf{u})=\left[\begin{array}{c}\mathbf{u} \cdot \mathbf{v}_{\mathbf{1}} \\ \mathbf{u} \cdot \mathbf{v}_{\mathbf{2}} \\ \vdots \\ \mathbf{u} \cdot \mathbf{v}_{\mathbf{k}}\end{array}\right]$.
(a) Prove that L is a linear transformation.
(b) Find $\operatorname{dim} \operatorname{ker} L$ and dim range L.
(c) Let W be the set of vectors \mathbf{w} in \mathbb{R}^{n} such that $\mathbf{w} \cdot \mathbf{v}_{\mathbf{i}}=0$ for all $i=1,2, . ., k$. Prove that W is a subspace of \mathbb{R}^{n} of dimension $n-k$.
(d) Assume $k<n$. Let $T=\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots, \mathbf{w}_{\mathbf{n}-\mathbf{k}}\right\}$ be an orthonormal basis for W. Prove that the set $R=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}, \mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots, \mathbf{w}_{\mathbf{n}-\mathbf{k}}\right\}$ is an orthonormal basis for \mathbb{R}^{n}.
8. Which of the following maps are linear transformations?
(a) $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $L\left(\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\right)=\left[\begin{array}{l}a b-c \\ c+5 a\end{array}\right]$.
(b) $L: P_{5} \rightarrow \mathbb{R}$ defined by $L(p(t))=\int_{0}^{1} p(t) d t$.
9. Let $L: \mathbb{R}^{4} \rightarrow P_{2}$ be the linear transformation given by
$L\left(\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]\right)=(a-b) t^{2}+(c+a) t+(b+c)$
(a) Find a basis for the kernel of L.
(b) Find a basis for the range of L.
(c) Is L one-to-one? Onto? Invertible?
10. Let $L: V \rightarrow V$ be a linear transformation. Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ be a basis for V. Suppose we know the following:

$$
\begin{gathered}
L\left(\mathbf{v}_{\mathbf{1}}\right)=\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{3}} \\
L\left(\mathbf{v}_{\mathbf{2}}\right)=\mathbf{v}_{\mathbf{1}}+2 \mathbf{v}_{\mathbf{2}}+3 \mathbf{v}_{\mathbf{3}} \\
L\left(\mathbf{v}_{\mathbf{3}}\right)=2 \mathbf{v}_{\mathbf{3}}
\end{gathered}
$$

(a) Find $L\left(2 \mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}\right)$.
(b) Find the representation of L with respect to S.
(c) Prove that L is invertible and find $L^{-1}\left(\mathbf{v}_{\mathbf{3}}\right)$.
11. Let V and W be finite dimensional real vector spaces and let $L: V \rightarrow W$ be a linear transformation. Circle the correct answer to the following two multiple choice questions.
(a) If L is one-to-one, what can we say about $\operatorname{dim}(V)$ and $\operatorname{dim}(W)$?
i. $\operatorname{dim}(V) \leq \operatorname{dim}(W)$
ii. $\operatorname{dim}(V) \geq \operatorname{dim}(W)$
iii. $\operatorname{dim}(V)=\operatorname{dim}(W)$
iv. none of the above
(b) If L is onto, what can we say about $\operatorname{dim}(V)$ and $\operatorname{dim}(W)$?
i. $\operatorname{dim}(V) \leq \operatorname{dim}(W)$
ii. $\operatorname{dim}(V) \geq \operatorname{dim}(W)$
iii. $\operatorname{dim}(V)=\operatorname{dim}(W)$
iv. none of the above
12. Let $L: P_{2} \rightarrow P_{2}$ be the linear transformation $L(p(t))=t p^{\prime}(t)+p(0)$.
(a) Find the matrix representing L with respect to the basis $\left\{t^{2}, t, 1\right\}$.
(b) Is L invertible? If yes, what is $L^{-1}\left(4 t^{2}-t+3\right)$?
13. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $L\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x-y \\ 2 y \\ y-3 x\end{array}\right]$. Let S be the standard basis for \mathbb{R}^{2} and $S^{\prime}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ -1\end{array}\right]\right\}$. Let T be the standard basis for \mathbb{R}^{3} and $T^{\prime}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]\right\}$.
(a) Find the representation of L with respect to
i. S and T
ii. S^{\prime} and T
iii. S and T^{\prime}
iv. S^{\prime} and T^{\prime}
(b) Find the transition matrix
i. P from S^{\prime} to S
ii. P^{-1} from S to S^{\prime}
iii. Q from T^{\prime} to T
iv. Q^{-1} from T to T^{\prime}
(c) Let A be the representation of L with respect to S and T. Compute $A P$, $Q^{-1} A$, and $Q^{-1} A P$. How to these compare to the other representations you found?

