Review for Exam 2

Note: All vector spaces are real vector spaces. Definition 4.4 will be provided on the exam as it appears in the textbook.

- 1. Determine if the set V together with operations \oplus and \odot is a vector space. Either show that Definition 4.4 is satisfied or determine which properties of Definition 4.4 fail to hold.
 - (a) $V = \mathbb{R}$ with $\mathbf{u} \oplus \mathbf{v} = \mathbf{u}\mathbf{v}$ and $c \odot \mathbf{u} = c + \mathbf{u}$.
 - (b) $V = P_2$ with $p(t) \oplus q(t) = p'(t)q'(t)$ and $c \odot p(t) = cp(t)$.
 - (c) V the set with two elements $\{\mathbf{v_1}, \mathbf{v_2}\}$ where $\mathbf{v_1} \oplus \mathbf{v_1} = \mathbf{v_2} \oplus \mathbf{v_2} = \mathbf{v_1}$ and $\mathbf{v_1} \oplus \mathbf{v_2} = \mathbf{v_2} \oplus \mathbf{v_1} = \mathbf{v_2}$ and $c \odot \mathbf{v_1} = c \odot \mathbf{v_2} = \mathbf{v_1}$.
 - (d) V is matrices of the form $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ with operations $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \oplus \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$ (matrix multiplication) and $r \odot \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & ra \\ 0 & 1 \end{bmatrix}$.
- 2. Determine if W is a subspace of V. If it is, find a basis for W and dim W.

(a)
$$V = \mathbb{R}^4$$
, let W be all 4-vectors $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ such that $a = b + c$ and $d = a - b$.
(b) $V = \mathbb{R}^4$, let W be all 4-vectors $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ such that $ab = cd$

(c) $V = M_{22}$, let W be the set of matrices A such that $A\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is a consistent linear system.

(d) $V = M_{22}$, let W be the set of matrices A such that $A \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} A$.

- 3. Let U and W be subspaces of a vector space V. The set of all vectors which are in both U and W is called the *intersection* of U and W and is denoted $U \cap W$.
 - (a) Prove that $U \cap W$ is a subspace of V.

(b) Let
$$V = \mathbb{R}^3$$
 and $U = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ and $W = \operatorname{span}\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$.
Find $U \cap W$.

- 4. Let U and W be subspaces of a finite dimensional vector space V. Let U + W be the set of all vectors in V that have the form $\mathbf{u} + \mathbf{w}$ for some \mathbf{u} in U and \mathbf{w} in W.
 - (a) Show that U + W is a subspace of V.
 - (b) Show that $\dim U + W \leq \dim U + \dim W$.
 - (c) **Challenge: Prove $\dim U + W = \dim U + \dim W \dim U \cap W$. (this is more difficult than an exam problem)
- 5. For what value or values of c is the set $\left\{ \begin{bmatrix} 3\\-5\\-4 \end{bmatrix}, \begin{bmatrix} c\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\c\\c \end{bmatrix} \right\}$ a basis for \mathbb{R}^3 ?. Hint: Use determinants.
- 6. For each set S, determine if S contains a basis for \mathbb{R}^3 , is contained in a basis for \mathbb{R}^3 , both, or neither.

(a)
$$S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\}$$

(b) $S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$
(c) $S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 3\\3\\0 \end{bmatrix} \right\}$
(d) $S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 3\\3\\3 \end{bmatrix} \right\}$

7. Find a basis for span S where S is the following subset of P_3 .

$$S = \{t^3 + t^2 - 1, t^2 + 2t + 1, t^3 + 2t^2 + 2t, t^3 + t - 1, -t^3 - 5t^2 + t\}$$

(e) Find a basis for W which contains the vector $\begin{bmatrix} 5\\0\\6 \end{bmatrix}$.

- 9. Determine if the statement is true or false. If it is true, give a proof. If it is false, find a counterexample.
 - (a) If V has basis S and W is a subspace of V, then there exists a set T contained in S which is a basis for W.
 - (b) If W is a subspace of V and both W and V are infinite dimensional, then W = V.

(c) If V is a subspace of
$$\mathbb{R}^3$$
 and V contains the vectors $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ and $\begin{bmatrix} 0\\2\\3 \end{bmatrix}$, then V also contains the vector $\begin{bmatrix} 2\\4\\5 \end{bmatrix}$.

- (d) If $S = {\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_k}}$ is a set of linearly independent vectors in a vector space V and **w** is a nonzero vector in V then the set ${\mathbf{v_1}+\mathbf{w}, \mathbf{v_2}+\mathbf{w}, ..., \mathbf{v_k}+\mathbf{w}}$ is also linearly independent.
- 10. Suppose A and B are $m \times n$ matrices and that the RREF of A and B are the same. Which of the following must be the same for A and B: the rank, the nullity, the row space, the column space, the null space?

- 11. Let A be an $n \times n$ matrix. Let $S = {\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}}$ be a basis for \mathbb{R}^n and let $T = {A\mathbf{v_1}, A\mathbf{v_2}, ..., A\mathbf{v_n}}$.
 - (a) Prove that if A is invertible, then T is linearly independent.
 - (b) Prove that for any \mathbf{v} in \mathbb{R}^n , the *n*-vector $A\mathbf{v}$ is in the column space of A.
 - (c) Prove that if the rank of A is less than n, then T does not span \mathbb{R}^n .
 - (d) Use the previous parts to show that T is a basis for \mathbb{R}^n if and only if A has rank n.
- 12. Let A be a 3×6 matrix.
 - (a) What are the possible values for the rank of A?
 - (b) What can you say about the nullity of A?
 - (c) Suppose that the rank of A is 3. Are the rows of A linearly independent? Are the columns of A linearly independent?

13. Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ -2 & -4 & 1 & 1 \end{bmatrix}$$
.

(a) Find the rank and nullity of A.

- (b) Find a basis for the row space of A.
- (c) Find a basis for the column space of A.
- (d) Find a basis for the null space of A.

(e) Let
$$\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
. Prove that $\begin{bmatrix} -1 \\ 1 \\ 2 \\ 0 \end{bmatrix}$ is a solution to $A\mathbf{x} = \mathbf{b}$ and find all the other solutions to $A\mathbf{x} = \mathbf{b}$.