Review for Exam 2

Note: All vector spaces are real vector spaces. Definition 4.4 will be provided on the exam as it appears in the textbook.

1. Determine if the set V together with operations \oplus and \odot is a vector space. Either show that Definition 4.4 is satisfied or determine which properties of Definition 4.4 fail to hold.
(a) $V=\mathbb{R}$ with $\mathbf{u} \oplus \mathbf{v}=\mathbf{u v}$ and $c \odot \mathbf{u}=c+\mathbf{u}$.
(b) $V=P_{2}$ with $p(t) \oplus q(t)=p^{\prime}(t) q^{\prime}(t)$ and $c \odot p(t)=c p(t)$.
(c) V the set with two elements $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ where $\mathbf{v}_{\mathbf{1}} \oplus \mathbf{v}_{\mathbf{1}}=\mathbf{v}_{\mathbf{2}} \oplus \mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{1}} \oplus \mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{2}} \oplus \mathbf{v}_{\mathbf{1}}=\mathbf{v}_{\mathbf{2}}$ and $c \odot \mathbf{v}_{\mathbf{1}}=c \odot \mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{1}}$.
(d) V is matrices of the form $\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$ with operations $\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right] \oplus\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right]=$ $\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right]$ (matrix multiplication) and $r \odot\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & r a \\ 0 & 1\end{array}\right]$.
2. Determine if W is a subspace of V. If it is, find a basis for W and $\operatorname{dim} W$.
(a) $V=\mathbb{R}^{4}$, let W be all 4-vectors $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ such that $a=b+c$ and $d=a-b$.
(b) $V=\mathbb{R}^{4}$, let W be all 4 -vectors $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ such that $a b=c d$
(c) $V=M_{22}$, let W be the set of matrices A such that $A \mathbf{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is a consistent linear system.
(d) $V=M_{22}$, let W be the set of matrices A such that $A\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] A$.
3. Let U and W be subspaces of a vector space V. The set of all vectors which are in both U and W is called the intersection of U and W and is denoted $U \cap W$.
(a) Prove that $U \cap W$ is a subspace of V.
(b) Let $V=\mathbb{R}^{3}$ and $U=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ and $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$. Find $U \cap W$.
4. Let U and W be subspaces of a finite dimensional vector space V. Let $U+W$ be the set of all vectors in V that have the form $\mathbf{u}+\mathbf{w}$ for some \mathbf{u} in U and \mathbf{w} in W.
(a) Show that $U+W$ is a subspace of V.
(b) Show that $\operatorname{dim} U+W \leq \operatorname{dim} U+\operatorname{dim} W$.
(c) ${ }^{* *}$ Challenge: Prove $\operatorname{dim} U+W=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim} U \cap W$.
(this is more difficult than an exam problem)
5. For what value or values of c is the set $\left\{\left[\begin{array}{c}3 \\ -5 \\ -4\end{array}\right],\left[\begin{array}{l}c \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ c \\ c\end{array}\right]\right\}$ a basis for \mathbb{R}^{3} ?. Hint: Use determinants.
6. For each set S, determine if S contains a basis for \mathbb{R}^{3}, is contained in a basis for \mathbb{R}^{3}, both, or neither.
(a) $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]\right\}$
(b) $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$
(c) $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 0\end{array}\right]\right\}$
(d) $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]\right\}$
7. Find a basis for span S where S is the following subset of P_{3}.

$$
S=\left\{t^{3}+t^{2}-1, t^{2}+2 t+1, t^{3}+2 t^{2}+2 t, t^{3}+t-1,-t^{3}-5 t^{2}+t\right\}
$$

8. Let $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 4 \\ 2\end{array}\right]\right\} . W$ is a subspace of \mathbb{R}^{3}.
(a) What is the dimension of W ?
(b) Is $W=\mathbb{R}^{3}$? If not, find a vector in \mathbb{R}^{3} which is not in W.
(c) Find a basis for \mathbb{R}^{3} which contains $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 4 \\ 2\end{array}\right]$.
(d) Prove that the vector $\left[\begin{array}{l}5 \\ 0 \\ 6\end{array}\right]$ is in W.
(e) Find a basis for W which contains the vector $\left[\begin{array}{l}5 \\ 0 \\ 6\end{array}\right]$.
9. Determine if the statement is true or false. If it is true, give a proof. If it is false, find a counterexample.
(a) If V has basis S and W is a subspace of V, then there exists a set T contained in S which is a basis for W.
(b) If W is a subspace of V and both W and V are infinite dimensional, then $W=V$.
(c) If V is a subspace of \mathbb{R}^{3} and V contains the vectors $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right]$, then V also contains the vector $\left[\begin{array}{l}2 \\ 4 \\ 5\end{array}\right]$.
(d) If $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ is a set of linearly independent vectors in a vector space V and \mathbf{w} is a nonzero vector in V then the set $\left\{\mathbf{v}_{\mathbf{1}}+\mathbf{w}, \mathbf{v}_{\mathbf{2}}+\mathbf{w}, \ldots, \mathbf{v}_{\mathbf{k}}+\right.$ $\mathbf{w}\}$ is also linearly independent.
10. Suppose A and B are $m \times n$ matrices and that the RREF of A and B are the same. Which of the following must be the same for A and B : the rank, the nullity, the row space, the column space, the null space?
11. Let A be an $n \times n$ matrix. Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be a basis for \mathbb{R}^{n} and let $T=\left\{A \mathbf{v}_{\mathbf{1}}, A \mathbf{v}_{\mathbf{2}}, \ldots, A \mathbf{v}_{\mathbf{n}}\right\}$.
(a) Prove that if A is invertible, then T is linearly independent.
(b) Prove that for any \mathbf{v} in \mathbb{R}^{n}, the n-vector $A \mathbf{v}$ is in the column space of A.
(c) Prove that if the rank of A is less than n, then T does not span \mathbb{R}^{n}.
(d) Use the previous parts to show that T is a basis for \mathbb{R}^{n} if and only if A has rank n.
12. Let A be a 3×6 matrix.
(a) What are the possible values for the rank of A ?
(b) What can you say about the nullity of A ?
(c) Suppose that the rank of A is 3 . Are the rows of A linearly independent? Are the columns of A linearly independent?
13. Let $A=\left[\begin{array}{cccc}1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ -2 & -4 & 1 & 1\end{array}\right]$.
(a) Find the rank and nullity of A.
(b) Find a basis for the row space of A.
(c) Find a basis for the column space of A.
(d) Find a basis for the null space of A.
(e) Let $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$. Prove that $\left[\begin{array}{c}-1 \\ 1 \\ 2 \\ 0\end{array}\right]$ is a solution to $A \mathbf{x}=\mathbf{b}$ and find all the other solutions to $A \mathbf{x}=\mathbf{b}$.
