
Review for Exam 1

1. Find all a for which the following linear system has no solutions, one solution,
and infinitely many solutions.

x + y − z = 2
x + 2y + z = 3
x + y + (a2 − 5)z = a

The augmented matrix for this system is

 1 1 −1 2
1 2 1 3
1 1 a2 − 5 a

. Doing the

elementary row operations r2 − r1 → r2 and r3 − r1 → r3, this becomes 1 1 −1 2
0 1 2 1
0 0 a2 − 4 a− 2

. To get the matrix in row echelon form, we want to

divide row three by a2 − 4, but we can only do this if a2 − 4 6= 0 so we need to
consider the cases where a2 − 4 = 0 and a2 − 4 6= 0 separately. The case where
a2 − 4 = 0 splits into two cases, a = 2 and a = −2 so we have three cases to
consider.

If a2 − 4 6= 0, then the row echelon form of the matrix is

 1 1 −1 2
0 1 2 1
0 0 1 a−2

a2−4

.

This gives us the equations z = a−2
a2−4

, y + 2z = 1 and x + y − z = 2. There
are leading ones in each column corresponding to the three variables an no
equations that look like 0 = 1, so there is one solution. In particular, it is
z = a−2

a2−4
, y = 1− 2(a−2)

a2−4
, x = 2− (1− 2(a−2)

a2−4
) + a−2

a2−4
.

If a = 2, then the matrix is

 1 1 −1 2
0 1 2 1
0 0 0 0

 so the equations are x + y − z =

2, y + 2z = 1, 0 = 0. There are infinitely many solutions as z can be anything.

In particular, the solutions are all vectors of the form

1 + 3z
1− 2z

z

 where z is

anything.

If a = −2 then the matrix is

 1 1 −1 2
0 1 2 1
0 0 0 −4

 and the last equation is 0 = −4

which has no solutions.
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Combining these results we get that the system has no solutions when a = −2,
one solution when a 6= 2,−2, and infinitely many solutions when a = 2.

2. Find the augmented matrix of each system of linear equations. Use Gaussian
elimination or Gauss-Jordan reduction to solve the linear system.

(a) y + 3z = −10
x + 2z = 11
2x− y + 7z = 14

The augmented matrix is

 0 1 3 −10
1 0 2 11
2 −1 7 14

. This can be gotten into row

echelon form by doing the following row operations: r1 ↔ r2, −2r1 + r3 →

r3, r3 + r2 → r3,
1
6
r3 → r3. The resulting matrix is

 1 0 2 11
0 1 3 −10
0 0 1 −3

.

We then proceed one of two different ways. One way to finish solving the
problem is to write this as the equations x+2z = 11, y+3z = −10, z = −3.
Using back substitution we get that y = −10 + 9 = −1, x = 11 + 6 = 17

so the solution is

 17
−1
−3

.

Another way to finish the problem is to do row operations to get the
matrix in reduced row echelon form. The following row operations will get
the matrix into reduced row echelon form: −3r3 + r2 → r2, −2r3 + r1 → r1

and the resulting matrix is

 1 0 0 17
0 1 0 −1
0 0 1 −3

. The equations are x =

17, y = −1, z = −3 so the solution is

17
−1
−3

.

(b) x + 3y − z + w = 5
x− 6y + 2z = 1
2x + w = 6

The augmented matrix is

 1 3 −1 1 5
1 −6 2 0 1
2 0 0 1 6

. The following elementary

row operations will get a matrix in row echelon form: −r1 + r2 → r2,
−2r1 + r3 → r3, −1

9
r2 → r2, 6r2 + r3 → r3, −3r3 → r3. The resulting
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matrix is

 1 3 −1 1 5
0 1 −1/3 1/9 4/9
0 0 0 1 4

.

We see from here that w = 4. There is no leading one in the z column
so z can be anything. To find y, use that y − 1

3
z + 1

9
w = 4

9
so y = 1

3
z.

Then x + 3y − z + w = 5 so x − 3y + 3y + 4 = 5 and x = 1. There are

infinitely many solutions, they are all vectors of the form


1
1
3
z
z
4

 where z

is anything.

Alternatively, we could do the row operations −1
9
r3 + r2 → r2,−r3 + r1 →

r1,−3r2 + r1 → r1 to get the matrix in reduced row echelon form. The

resulting matrix is

 1 0 0 0 1
0 1 −1/3 0 0
0 0 0 1 4

. We again see that x = 1, w = 4,

and y = 1
3
z. So the solutions are vectors of the form


1
1
3
z
z
4

 where z is

anything.

This could also be written as all vectors of the form


1
y
3y
4

 where y is

anything.

(c) 2x + 3y + z − w = 1
x− y + w = 2
4x + y + z + w = 4
6x + 3y − 7z − w = 12

The augmented matrix is


2 3 1 −1 1
1 −1 0 1 2
4 1 1 1 4
6 3 −7 −1 12

. The row operations

r1 ↔ r2,−2r1 +r2 → r2,−4r1 +r3 → r3,−6r1 +r4 → r4 give us the matrix
1 −1 0 1 2
0 5 1 −3 −3
0 5 1 −3 −4
0 9 −7 −7 0

. We can see looking at rows 2 and 3 that there

will not be any solutions because we cannot have 5y+z−3w equal to both
−3 and −4. We can also see this by taking r2 − r3 → r2. Then r2 would
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be
[

0 0 0 0 1
]

and there are no solutions to the equation 0 = 1.

3. Let A =

[
1 2 0
−1 0 1

]
, B =

[
−4 1 1
3 1 1

]
, C =

[
−1 2
0 1

]
.

Compute D = ABT + 2C2. Which of the following terms describe D: diagonal,
scalar, upper triangular, lower triangular, symmetric, skew symmetric, invert-
ible.
Circle all (if any) that apply.

ABT =

[
1 2 0
−1 0 1

] −4 3
1 1
1 1

 =

[
−2 5
5 −2

]
and C2 =

[
1 0
0 1

]
so D =[

0 5
5 0

]
.

This matrix is symmetric and invertible. It is not diagonal, scalar, upper trian-
gular, lower triangular, or skew symmetric.

4. Let A be an m× n matrix with n > m (so A has more columns than rows).

(a) Prove that the homogeneous linear system Ax = 0 has infinite solutions.

The system is homogeneous so it has at least one solution. Whether it
has 1 or infinite solutions will depend on if the columns of the RREF of
A all contain leading ones. Let B be the RREF of A. The augmented
matrix of the linear system is [A : 0] and the RREF of this matrix is
[B : 0]. B is the same size as A so it has more columns then rows. There
are at most m leading 1’s (one per nonzero row) in B and there are n
columns with n > m, so at least one columm of B does not contain a
leading one. The variable corresponding to the column without a leading
one is a free variable that can be anything so there will be infinite solutions.

(b) What are the possible numbers of solutions to Ax = b?

By the same argument as above, we know that the RREF of A has a least
one column without a leading one, so we can rule out that the possibility
of having one solution. The other two possibilities are 0 or infinite. We
will write down examples to show that both are possible. If A has more
columns than rows, the linear system has more variables than equations.
An example with no solutions would be x + y + z = 1, x + y + z = 2.
An example with infinite solutions would be x + y = 1, z = 1. Therefore
Ax = b can have 0 or infinitely many solutions.
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5. Let A =

[
1 2
3 4

]
. Determine if A is a linear combination of the matrices

B,C,D where B =

[
1 1
0 0

]
, C =

[
1 0
1 0

]
, D =

[
−1 0
0 1

]
.

We want to see if we can find real numbers b, c, d such that

[
1 2
3 4

]
= b

[
1 1
0 0

]
+

c

[
1 0
1 0

]
+d

[
−1 0
0 1

]
=

[
b + c− d b

c d

]
. This gives us the system b+c−d =

1, b = 2, c = 3, d = 4 which has solution b = 2, c = 3, d = 4 so[
1 2
3 4

]
= 2

[
1 1
0 0

]
+ 3

[
1 0
1 0

]
+ 4

[
−1 0
0 1

]
.

Therefore A is a linear combination of B, C, and D.

6. Let A =

1 2 y z 0
0 0 x 1 0
0 0 0 0 y + z

.

Find all possible choices for the variables x, y, z for which A is in RREF.

To be in RREF, the first nonzero entry of each nonzero row must be 1. This
forces x to be 0 or 1 and y + z to be 0 or 1. If x = 1, then it is a leading one
and the other entries in column 2 must be 0, so y = 0. The 1,4 entry can be
anything so this does not put any restrictions on z, but as y + z is 0 or 1 and
y = 0 we see that z has to be 0 or 1. We have so far found two possibilities
which are x = 1, y = 0, z = 0 or x = 1, y = 0, z = 1. If x = 0, then the entry
above it can be anything. But then the 1 in the 2,4 position is a leading one
so the other entries in column 4 must be 0 so z = 0. Then as y + z is 0 or
1 and z = 0 we get that y = 1 or y = 0. This gives two more possibilities
x = 0, y = 0, z = 0 or x = 0, y = 1, z = 0.

There are a total of 4 different wants to pick x, y, z.

i) x = 1, y = 0, z = 0

ii) x = 1, y = 0, z = 1

iii) x = 0, y = 0, z = 0

iv) x = 0, y = 1, z = 0

7. (a) Let A =

 1 0 0
0 2 0
0 0 3

 , B =

 4 0 0
0 −5 0
0 0 7

. Compute AB.
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AB =

 4 0 0
0 −10 0
0 0 21


(b) Let C be an n×n diagonal matrix with diagonal entries c1, c2, ..., cn and D

be an n × n diagonal matrix with diagonal entries d1, d2, ..., dn. Describe
the matrix CD.

CD is also n×n and diagonal. The diagonal entries are c1d1, c2d2, ..., cndn.

(c) Determine if the following statement is true or false.
If C and D are diagonal n× n matrices then CD = DC.

True. Use part (b). Both CD and DC are diagonal matrices. The entries
on the diagonal of CD are c1d1, c2d2, ..., cndn and the entries on the diagonal
of DC are d1c1, d2c2, ..., dncn. The ci and di are just numbers so cidi = dici
for all i and the entries of CD and DC are all equal.

8. Determine if each statement is true or false. If it is true give a proof. If it is
false find a counterexample.

(a) If v is a solution to the linear system Ax = b, then 5v is also a solution
to Ax = b.

False. If v is a solution to the linear system Ax = b, then Av = b. Then
A(5v) = 5(Av) = 5b. This is not equal to b unless b = 0, so this fails for
any consistent linear system which is not homogeneous.

(b) If A is an n× n matrix and Ak = In for some positive integer k, then A is
invertible.

TRUE. Suppose Ak = In. If k = 1, then A = In so A is invertible.
If k > 1, then we can rewrite Ak as Ak−1A or AAk−1 so we see that
AAk−1 = Ak−1A = In so A has inverse Ak−1.

Another way to prove this is using determinants. If Ak = In, then det(A)k =
1 so det(A) = −1, 1. As det(A) 6= 0, A is invertible.

(c) If A is an invertible n× n matrix, then Ak = In for some positive integer
k.

False. For example, the matrix 2I is invertible (it has inverse 1
2
I), but

(2I)k = 2kI which does not equal I for any positive integer k.

(d) If A is an n× n matrix with det(A) = 3, then det(A2 − A) = 6.

False. There is no nice property for the determinant of a difference of
matrices, so there is no way to find det(A2 − A) from just det(A). For

example if A =

[
3 0
0 1

]
, then det(A) = 3 but A2 − A =

[
6 0
0 0

]
which has

determinant 0, not 6.
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9. Find the inverse of A or show that A is not invertible.

(a) A =

1 0 2
2 0 3
3 4 5


Start with the partitioned matrix

 1 0 2 1 0 0
2 0 3 0 1 0
3 4 5 0 0 1

. Perform the fol-

lowing row operations: −2r1+r2 → r2, −3r1+r3 → r3, r2 ↔ r3,
1
4
r2 → r2,

−r3 → r3,
1
4
r3 + r2 → r2, and −2r3 + r1 → r1.

The resulting matrix is

 1 0 0 −3 2 0
0 1 0 −1/4 −1/4 1/4
0 0 1 2 −1 0

, so the inverse of

is A−1 =

 −3 2 0
−1/4 −1/4 1/4

2 −1 0

.

(b) A =

1 7 5
3 −1 2
5 13 12


Start with the partitioned matrix

 1 7 5 1 0 0
3 −1 2 0 1 0
5 13 12 0 0 1

. If we do the

row operations −3r1 + r2 → r2,−5r1 + r3 → r3, and −r2 + r3 → r3 we

get

 1 7 5 1 0 0
0 −22 −13 −3 1 0
0 0 0 −2 −1 1

. We can stop here because A is row

equivalent to matrix with a row of zeros so the RREF of A is not going to
be I3 and A is not invertible.

(c) A =


1 0 −1 0
0 3 0 0
0 1 0 4
2 0 0 1



Start with the partitioned matrix


1 0 −1 0 1 0 0 0
0 3 0 0 0 1 0 0
0 1 0 4 0 0 1 0
2 0 0 1 0 0 0 1

. Perform

the following row operations: −2r1 + r4 → r4, r2 ↔ r3, −3r2 + r3 → r3,
r3 ↔ r4,

1
2
r3 → r3, − 1

12
r4 → r4, −1

2
r4 + r3 → r3, −4r4 + r2 → r2, and

r3 + r1 → r1.

7



The resulting matrix is


1 0 0 0 0 1/24 −1/8 1/2
0 1 0 0 0 1/3 0 0
0 0 1 0 −1 1/24 −1/8 1/2
0 0 0 1 0 −1/12 1/4 0

, so the

inverse of is A−1 = 1
24


0 1 −3 12
0 8 0 0
−24 1 −3 12

0 −2 6 0

.

10. Let A be an n×n matrix such that the n-th row is a linear combination of rows
1 through n− 1. Prove that A is not invertible.

Row n is a linear combination of rows 1 through n − 1 so there are constants
k1, ..., kn−1 such that rn = k1r1 + k2r2 + ... + kn−1rn−1 (where r1, r2, ..., rn are
the rows of A).

If we do the following type three row operations rn − k1r1 → rn, rn − k2r2 →
rn, ...., rn − kn−1rn−1 → rn, then the resulting matrix has an n-th row which
consists of all zeros. The determinant was not changed by the type three row
operations and any matrix with a row of zeros has determinant 0, so det(A) = 0
and A is not invertible.

11. Let A be a 4 × 4 matrix. Suppose that


1
2
3
4

 is a solution to Ax = 0. What is

det(A)?

A is a square matrix, so we can use the theorem which lists the conditions
which are equivalent to A being invertible. If A was invertible, then Ax = 0
would have only the trivial solution. As it has a nontrivial solution, A cannot
be invertible so det(A) = 0.

12. Suppose A is a 3× 3 matrix with det(A) = 6. Compute the determinant of the
following matrices.

(a) A3

det(A3) = det(A)3 = 216

(b) 2A

det(2A) = 23 det(A) = (8)(6) = 48

(c) (AT )−1

det((AT )−1) = 1/ det(AT ) = 1/ det(A) = 1/6.

13. Suppose A and B are invertible 3× 3 matrices and ABT = 2B2. If det(A) = 5,
what is det(B)?
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det(ABT ) = det(2B2). The left side is det(ABT ) = det(A) det(BT ) = det(A) det(B) =
5 det(B). The right side is det(2B2) = 23 det(B2) = 8 det(B) det(B) = 8 det(B)2.
This gives us the equation 5 det(B) = 8 det(B)2. There are two possible solu-
tions to this equation, det(B) = 5/8 or det(B) = 0, but B is invertible so
det(B) 6= 0 and thus det(B) = 5/8.

14. Compute the determinant of A.

(a) A =

[
3 −1
2 5

]
For 2×2 matrixes, the determinant is a11a22−a12a21 so det(A) = (3)(5)−
(−1)(2) = 17.

(b) A =

 0 1 −2
5 0 2
0 −1 3


There are a lot of different methods that can be used to find this deter-
minant. For review purposes we will go over all of them. On an exam,
you can use whatever method you find easiest. Time permitting, you may
want to use more than one method as a check.

Method 1: Using the definition of determinant. There are two ways to
pick 3 nonzero entries so that we have exactly one from each row and col-
umn. We can take the 5 from column 1, the 1 from column 2, and the 3
from column 3 or we can take the 5 from column 1, the -1 from column 2,
and the -2 from column 3. The first choice of three entries corresponds to
the permutation 213 which has 1 inversion so is odd. The second choice
corresponds to the permutation 312 which has 2 inversions so is even. The
determinant is therefore −(5)(1)(3) + (5)(−1)(−2) = −5.

Method 2: Reduction to triangular form. The row operations r1 ↔ r2,

r3 + r2 → r3 will give you the upper triangular matrix

 5 0 2
0 1 −2
0 0 1

. The

determinant of an upper triangular matrix is the product of its diagonal
entries so this matrix has determinant (5)(1)(1) = 5. The first row opera-
tion was type 1 so it swapped the sign of the determinant and the second
was type 3 so it does not change the determinant so the determinant of
the original matrix A is −5.

Method 3: Cofactor Expansion. Using cofactor expansion along the first

column, we get that det(A) = −5 det

([
1 −2
−1 3

])
= −5((1)(3) −
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(−2)(−1)) = −5.

Method 4: We can also use the trick for 3 × 3 matrices where we repeat
the first and second column next to A. See Example 8 in Section 3.1 for a
more detailed explanation of this method.

(c) A =


1 0 0 6
0 3 4 7
0 0 5 8
2 0 0 9


Method 1: Using the definition of determinant. We are looking for ways
to pick out 4 nonzero entries so that we have exactly one from each row
and each column. In column 2 we must take the second entry. In col-
umn 3, we cannot take the second entry since we already have something
from row 2 so we must take the 3rd entry. Then we can either take the
first entry from the first column and fourth entry from the fourth column,
or we can take the fourth entry from column 1 and the first entry from
column 4. We see that the determinant has 2 nonzero terms which are
a11a22a33a44 = (1)(3)(5)(9) = 135 and a14a22a33a41 = (6)(3)(5)(2) = 180.
We also need to determine the sign ± to go along with each term. The
first term corresponds to the permutation 1234 which has no inversions
so is even and gets a +. The second term corresponds to 4231 which has
inversions 42, 43, 41, 21, 31 so it has 5 inversions and is odd and gets a −.
Hence det(A) = 135− 180 = −45.

Method 2: Reduction to triangular form. The single row operation r4 −

2r1 → r4 will result in the upper triangular matrix


1 0 0 6
0 3 4 7
0 0 5 8
0 0 0 −3

. The

determinant of an upper triangular matrix is the product of the diagonal
entries so this matrix has determinant (1)(3)(5)(−3) = −45. As the row
operation we did was a type 3 row operation, it does not change the de-
terminant and hence det(A) is also −45.

Method 3: Cofactor expansion. Using cofactor expansion along the second

column we get det(A) = 3 det

 1 0 6
0 5 8
2 0 9

. Expanding along the first

row, this is 3

[
1 det

([
5 8
0 9

])
+ 6 det

([
0 5
2 0

])]
= 3(45 + −60) =

3(−15) = −45.

Of course, you can also use a combination of methods. For example, you
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could use cofactor expansion to get down to 3 × 3 matrices then use the
trick for 3× 3 matrices to compute the 3× 3 determinants.

15. The matrix A =


1 2 6 8
1 3 0 9
1 4 0 10
1 5 7 0

 is invertible. Find all solutions to the follow-

ing linear systems.

(a) A−1x = b where b =


2
1
−1
0


If we multiply A−1x = b by A, we get x = Ab is the only solution. This

is Ab =


−2
5
6
0

.

(b) Ax = 0

A is invertible so the only solution is the trivial solution, x = 0 =


0
0
0
0

.
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