Review for Exam 1

1. Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions.
$x+y-z=2$
$x+2 y+z=3$
$x+y+\left(a^{2}-5\right) z=a$
2. Find the augmented matrix of each system of linear equations. Use Gaussian elimination or Gauss-Jordan reduction to solve the linear system.
(a) $y+3 z=-10$
$x+2 z=11$
$2 x-y+7 z=14$
(b) $x+3 y-z+w=5$
$x-6 y+2 z=1$
$2 x+w=6$
(c) $2 x+3 y+z-w=1$
$x-y+w=2$
$4 x+y+z+w=4$
$6 x+3 y-7 z-w=12$
3. Let $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & 0 & 1\end{array}\right], B=\left[\begin{array}{ccc}-4 & 1 & 1 \\ 3 & 1 & 1\end{array}\right], C=\left[\begin{array}{cc}-1 & 2 \\ 0 & 1\end{array}\right]$.

Compute $D=A B^{T}+2 C^{2}$. Which of the following terms describe D : diagonal, scalar, upper triangular, lower triangular, symmetric, skew symmetric, invertible.
Circle all (if any) that apply.
4. Let A be an $m \times n$ matrix with $n>m$ (so A has more columns than rows).
(a) Prove that the homogeneous linear system $A \mathbf{x}=\mathbf{0}$ has infinite solutions.
(b) What are the possible numbers of solutions to $A \mathbf{x}=\mathbf{b}$?
5. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Determine if A is a linear combination of the matrices B, C, D where $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], C=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right], D=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$.
6. Let $A=\left[\begin{array}{ccccc}1 & 2 & y & z & 0 \\ 0 & 0 & x & 1 & 0 \\ 0 & 0 & 0 & 0 & y+z\end{array}\right]$.

Find all possible choices for the variables x, y, z for which A is in RREF.
7. (a) Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right], B=\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 7\end{array}\right]$. Compute $A B$.
(b) Let C be an $n \times n$ diagonal matrix with diagonal entries $c_{1}, c_{2}, \ldots, c_{n}$ and D be an $n \times n$ diagonal matrix with diagonal entries $d_{1}, d_{2}, \ldots, d_{n}$. Describe the matrix $C D$.
(c) Determine if the following statement is true or false. If C and D are diagonal $n \times n$ matrices then $C D=D C$.
8. Determine if each statement is true or false. If it is true give a proof. If it is false find a counterexample.
(a) If \mathbf{v} is a solution to the linear system $A \mathbf{x}=\mathbf{b}$, then $5 \mathbf{v}$ is also a solution to $A \mathrm{x}=\mathrm{b}$.
(b) If A is an $n \times n$ matrix and $A^{k}=I_{n}$ for some positive integer k, then A is invertible.
(c) If A is an invertible $n \times n$ matrix, then $A^{k}=I_{n}$ for some positive integer k.
(d) If A is an $n \times n$ matrix with $\operatorname{det}(A)=3$, then $\operatorname{det}\left(A^{2}-A\right)=6$.
9. Find the inverse of A or show that A is not invertible.
(a) $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 0 & 3 \\ 3 & 4 & 5\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}1 & 7 & 5 \\ 3 & -1 & 2 \\ 5 & 13 & 12\end{array}\right]$
(c) $A=\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 1 & 0 & 4 \\ 2 & 0 & 0 & 1\end{array}\right]$
10. Let A be an $n \times n$ matrix such that the n-th row is a linear combination of rows 1 through $n-1$. Prove that A is not invertible.
11. Let A be a 4×4 matrix. Suppose that $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ is a solution to $A \mathbf{x}=\mathbf{0}$. What is $\operatorname{det}(A) ?$
12. Suppose A is a 3×3 matrix with $\operatorname{det}(A)=6$. Compute the determinant of the following matrices.
(a) A^{3}
(b) $2 A$
(c) $\left(A^{T}\right)^{-1}$
13. Suppose A and B are invertible 3×3 matrices and $A B^{T}=2 B^{2}$. If $\operatorname{det}(A)=5$, what is $\operatorname{det}(B)$?
14. Compute the determinant of A.
(a) $A=\left[\begin{array}{cc}3 & -1 \\ 2 & 5\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}0 & 1 & -2 \\ 5 & 0 & 2 \\ 0 & -1 & 3\end{array}\right]$
(c) $A=\left[\begin{array}{llll}1 & 0 & 0 & 6 \\ 0 & 3 & 4 & 7 \\ 0 & 0 & 5 & 8 \\ 2 & 0 & 0 & 9\end{array}\right]$
15. The matrix $A=\left[\begin{array}{cccc}1 & 2 & 6 & 8 \\ 1 & 3 & 0 & 9 \\ 1 & 4 & 0 & 10 \\ 1 & 5 & 7 & 0\end{array}\right]$ is invertible. Find all solutions to the following linear systems.
(a) $A^{-1} \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=\left[\begin{array}{c}2 \\ 1 \\ -1 \\ 0\end{array}\right]$
(b) $A \mathrm{x}=\mathbf{0}$

