Quiz 3 Solutions

1. Let $A=\left[\begin{array}{cc}9 & 4 \\ -4 & -1\end{array}\right]$. Find the eigenvalues of A.

The characteristic polynomial of A is $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\left[\begin{array}{cc}\lambda-9 & -4 \\ 4 & \lambda+1\end{array}\right]\right)=$ $(\lambda-9)(\lambda+1)+16=\lambda^{2}-8 \lambda+7=(\lambda-7)(\lambda-1)$. This is 0 when λ is 1 or 7 so the eigenvalues of A are 1 and 7 .
2. Let $A=\left[\begin{array}{lll}4 & 0 & 1 \\ 0 & 5 & 0 \\ 1 & 0 & 4\end{array}\right]$. One of the eigenvalues of A is 5 . Find a basis for the eigenspace associated with the eigenvalue 5 .

The eigenspace associated with 5 is the same as the null space of $5 I-A=$ $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1\end{array}\right]$. This matrix has RREF $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. The null space is all vectors of the form $\left[\begin{array}{l}z \\ y \\ z\end{array}\right]=z\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]+y\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ which has basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$.
3. Let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 3 & 1 \\ 0 & -3 & 1\end{array}\right]$. For what value (if any) of c is the vector $\mathbf{v}=\left[\begin{array}{c}2 \\ -1 \\ c\end{array}\right]$ an eigenvector of A ? Either find c and the associated eigenvalue, or explain why no such c exists.

We want to find λ such that $A \mathbf{v}=\lambda \mathbf{v} . \quad A \mathbf{v}=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 3 & 1 \\ 0 & -3 & 1\end{array}\right]\left[\begin{array}{c}2 \\ -1 \\ c\end{array}\right]=\left[\begin{array}{c}1+c \\ -5+c \\ 3+c\end{array}\right]$ and $\lambda \mathbf{v}=\left[\begin{array}{c}2 \lambda \\ -\lambda \\ c \lambda\end{array}\right]$ so we get the equations $2 \lambda=1+c,-\lambda=-5+c$, and $c \lambda=3+c$. The first two equations $2 \lambda=1+c$ and $-\lambda=-5+c$ are linear in c and λ and have unique solution $c=3$ and $\lambda=2$. This works in the third equation $c \lambda=3+c$, so \mathbf{v} is an eigenvector when $c=3$ and the associated eigenvalue is $\lambda=2$.

Bonus: Determine if the following is true or false. Give a proof or counterexample. (5 pts) If A has eigenvalue λ, then $A+A^{T}$ must have eigenvalue 2λ.

False. One possible counterexample is the matrix $A=\left[\begin{array}{cc}9 & 4 \\ -4 & -1\end{array}\right]$ from problem 1 . A has eigenvalues 1 and 7 and $A+A^{T}=\left[\begin{array}{cc}18 & 0 \\ 0 & -2\end{array}\right]$ which has eigenvalues 18 and -2 , which are not 2 times the eigenvalues of A.

