1. Let $A=\left[\begin{array}{cc}9 & 4 \\ -4 & -1\end{array}\right]$. Find the eigenvalues of A.
2. Let $A=\left[\begin{array}{lll}4 & 0 & 1 \\ 0 & 5 & 0 \\ 1 & 0 & 4\end{array}\right]$. One of the eigenvalues of A is 5 . Find a basis for the eigenspace associated with the eigenvalue 5 .
3. Let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 3 & 1 \\ 0 & -3 & 1\end{array}\right]$. For what value (if any) of c is the vector $\mathbf{v}=\left[\begin{array}{c}2 \\ -1 \\ c\end{array}\right]$ an eigenvector of A ? Either find c and the associated eigenvalue, or explain why no such c exists.

Bonus: Determine if the following is true or false. Give a proof or counterexample. (5 pts)

If A has eigenvalue λ, then $A+A^{T}$ must have eigenvalue 2λ.

