Quiz 2 Solutions

1. Let $S=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right],\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]\right\}$.
(a) Find the lengths of the vectors in S.

These vectors are all length 1 . Use that the length of $\left[\begin{array}{l}x \\ y\end{array}\right]$ is $\sqrt{x^{2}+y^{2}}$.
(b) Is the set S orthogonal, orthonormal, or neither? Explain.

This set is neither. Not all pairs of vectors from S are orthogonal. For example the first vector and the third vector are not orthogonal because their dot product is $1 / \sqrt{2}$, not 0 . As it is not orthogonal, it is also not orthonormal.
2. Find an orthogonal basis for the 2-dimensional subspace of \mathbb{R}^{3} with basis $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$. (6 pts)

Let $\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$ and $\mathbf{u}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and let $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ be the orthogonal basis we're trying to construct. Use the Gram-Schmidt formula to find the $\mathbf{v}_{\mathbf{i}}$.

The first vector is $\mathbf{v}_{\mathbf{1}}=\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$.
The second is $\mathbf{v}_{\mathbf{2}}=\mathbf{u}_{\mathbf{2}}-\frac{\mathbf{v}_{1} \cdot \mathbf{u}_{\mathbf{2}}}{\mathbf{v}_{1} \cdot \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]-\frac{3}{6}\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]=\frac{1}{2}\left(\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]-\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]\right)=\frac{1}{2}\left[\begin{array}{l}4 \\ 3 \\ 5\end{array}\right]$.
The orthogonal basis we get is $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 3 / 2 \\ 5 / 2\end{array}\right]\right\}$. Another possible answer is $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}4 \\ 3 \\ 5\end{array}\right]\right\}$.
3. Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ be an orthonormal set of vectors in \mathbb{R}^{n}. (4 points each) Question 1: What can we say about n ?
$n \geq 3$. Any orthogonal set of nonzero vectors is linearly independent. S is orthogonal and the vectors are nonzero because they have length 1 , so S is a linearly independent set in \mathbb{R}^{n}. The dimension of \mathbb{R}^{n} is n so it cannot contain a linearly independent set of size larger than n, so n must be a least 3 .

Question 2: Let $\mathbf{u}=\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{3}}$ and $\mathbf{w}=3 \mathbf{v}_{\mathbf{1}}+2 \mathbf{v}_{\mathbf{2}}$. What is $\mathbf{u} \cdot \mathbf{w}$?
$\mathbf{u} \cdot \mathbf{w}=3$. Using properties of dot products,

$$
\begin{gathered}
\mathbf{u} \cdot \mathbf{w}=\left(\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{3}}\right) \cdot\left(3 \mathbf{v}_{\mathbf{1}}+2 \mathbf{v}_{\mathbf{2}}\right) \\
=3\left(\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}\right)-3\left(\mathbf{v}_{\mathbf{3}} \cdot \mathbf{v}_{\mathbf{1}}\right)+2\left(\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}\right)-2\left(\mathbf{v}_{\mathbf{3}} \cdot \mathbf{v}_{\mathbf{2}}\right) .
\end{gathered}
$$

As S is orthogonal, $\mathbf{v}_{\mathbf{3}} \cdot \mathbf{v}_{\mathbf{1}}=\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{3}} \cdot \mathbf{v}_{\mathbf{2}}=0$. Also, the vectors in S have length 1 so $\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}=\left\|\mathbf{v}_{\mathbf{1}}\right\|^{2}=1^{2}=1$. Plugging in these values gives

$$
\mathbf{u} \cdot \mathbf{w}=3(1)-3(0)+2(0)-2(0)=3 .
$$

