Linear Algebra

Quiz 2
Name: \qquad

1. Let $S=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right],\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]\right\}$.
(a) Find the lengths of the vectors in S.
(2 pts)
(b) Is the set S orthogonal, orthonormal, or neither? Explain.
2. Find an orthogonal basis for the 2-dimensional subspace of \mathbb{R}^{3} with basis $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$. (6 pts)
3. Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ be an orthonormal set of vectors in \mathbb{R}^{n}. The following two questions are multiple choice - circle the best possible answer. You do not need to show work or explain your answer.
(4 points each)

Question 1: What can we say about n ?
(a) $n=3$
(b) $n \neq 3$
(c) $n \leq 3$
(d) $n \geq 3$
(e) We cannot tell anything about n from the given information

Question 2: Let $\mathbf{u}=\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{3}}$ and $\mathbf{w}=3 \mathbf{v}_{\mathbf{1}}+2 \mathbf{v}_{\mathbf{2}}$. What is $\mathbf{u} \cdot \mathbf{w}$?
(a) 9
(b) 4
(c) 3
(d) 1
(e) This cannot be determined from the given information

