Homework 9 Solutions to Additional Problems:

1. Let S be the following ordered basis for $\mathbb{R}^{3} . S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$.
(a) Let $\mathbf{v}=\left[\begin{array}{c}4 \\ -3 \\ 2\end{array}\right]$. Find $[\mathbf{v}]_{S}$, the coordinate vector of \mathbf{v} with respect to S. Setting $\left[\begin{array}{c}4 \\ -3 \\ 2\end{array}\right]=x\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]+y\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+z\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$, we get the linear system $x+2 z=$ $4, y+z=-3, x=2$. This has solution $x=2, y=-4, z=1$ so the coordinate vector is $[\mathbf{v}]_{S}=\left[\begin{array}{c}2 \\ -4 \\ 1\end{array}\right]$.
(b) Suppose \mathbf{w} is a vector in \mathbb{R}^{3} and $[\mathbf{w}]_{S}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Find \mathbf{w}.

$$
\mathbf{w}=1\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+3\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
7 \\
5 \\
1
\end{array}\right]
$$

2. Let $S=\left\{1, t, t^{2}\right\}$ and $T=\left\{t-1, t^{2}+1, t\right\}$. These are both ordered bases for P_{2}. Let $p(t)=4 t^{2}-5 t+3$.
(a) Find $[p(t)]_{S}$ and $[p(t)]_{T}$.

$$
p(t)=3(1)+(-5)(t)+4\left(t^{2}\right) \text { so }[p(t)]_{S}=\left[\begin{array}{c}
3 \\
-5 \\
4
\end{array}\right] .
$$

For $[p(t)]_{T}$, we need to find x, y, z with $4 t^{2}-5 t+3=x(t-1)+y\left(t^{2}+1\right)+z(t)$. Rewrite this as $4 t^{2}-5 t+3=(y) t^{2}+(x+z) t+(-x+y)$ to get the linear system $y=4, x+z=-5,-x+y=3$. This has solution $x=1, y=4, z=-6$ so $[p(t)]_{T}=\left[\begin{array}{c}1 \\ 4 \\ -6\end{array}\right]$.
(b) Find $P_{S \leftarrow T}$, the transition matrix from T to S.

To find $P_{S \leftarrow T}$, we take the vectors of T and find their coordinates with respect to S. The first vector in T is $t-1$. Writing this a linear combination of S
vectors is $t-1=(-1)(1)+(1)(t)+(0) t^{2}$ so $[t-1]_{S}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$. The second
vector is $t^{2}+1=(1)(1)+(0)(t)+(1)\left(t^{1}\right)$ so $\left[t^{2}+1\right]_{S}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. The third vector is $t=(0)(1)+(1)(t)+(0)\left(t^{2}\right)$ so $[t]_{S}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. These three coordinate vectors (in order) are the three columns of $P_{S \leftarrow T}$ so $P_{S \leftarrow T}=\left[\begin{array}{ccc}-1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.
(c) Find $Q_{T \leftarrow S}$, the transition matrix from S to T.

Here we take the vectors in S and find their T coordinates. The first vector is 1 so we set $1=x(t-1)+y\left(t^{2}+1\right)+z(t)$ and which gives the system $y=0, x+z=0,-x+y=1$. This has solution $x=-1, y=0, z=1$ so $[1]_{T}=$ $\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$. For the second vector we get $t=x(t-1)+y\left(t^{2}+1\right)+z(t)$. This gives us the system $y=0, x+z=1,-x+y=0$ which has solution $x=0, y=0, z=1$ so $[t]_{T}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. For the third vector we get $t^{2}=x(t-1)+y\left(t^{2}+1\right)+z(t)$. This gives us the system $y=1, x+z=0,-x+y=0$ which has solution $x=1, y=1, z=-1$ so $[t]_{T}=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$. These are the columns of $Q_{T \leftarrow S}$ so $Q_{T \leftarrow S}=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & -1\end{array}\right]$.
(d) Verify that $[p(t)]_{S}=P_{S \leftarrow T}[p(t)]_{T}$ and $[p(t)]_{T}=Q_{T \leftarrow S}[p(t)]_{S}$.

$$
\begin{aligned}
& P_{S \leftarrow T}[p(t)]_{T}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
4 \\
-6
\end{array}\right]=\left[\begin{array}{c}
3 \\
-5 \\
4
\end{array}\right]=[p(t)]_{S} \\
& Q_{T \leftarrow S}[p(t)]_{S}=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{c}
3 \\
-5 \\
4
\end{array}\right]=\left[\begin{array}{c}
1 \\
4 \\
-6
\end{array}\right]=[p(t)]_{T}
\end{aligned}
$$

(e) How are $P_{S \leftarrow T}$ and $Q_{T \leftarrow S}$ related? Hint: multiply them together.
$P_{S \leftarrow T} Q_{T \leftarrow S}=\left[\begin{array}{ccc}-1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & -1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$P_{S \leftarrow T}$ and $Q_{T \leftarrow S}$ are inverses.
3. For each of the following functions, determine if it is a linear transformation.
(a) $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $L\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x y \\ z\end{array}\right]$

This is not a linear transformation. It fails both properties of a linear transformation. Here we will check both properties, but to show it is not a linear transformation you only need to show that one of the two fails.
The first property is $L(\mathbf{u}+\mathbf{v})=L(\mathbf{u})+L(\mathbf{v})$. Let $\mathbf{u}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]$.
Then $L(\mathbf{u}+\mathbf{v})=L\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]+\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]\right)=L\left(\left[\begin{array}{l}x+x^{\prime} \\ y+y^{\prime} \\ z+z^{\prime}\end{array}\right]\right)=\left[\begin{array}{c}\left(x+x^{\prime}\right)\left(y+y^{\prime}\right) \\ z+z^{\prime}\end{array}\right]$.
But $L(\mathbf{u})+L(\mathbf{v})=L\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)+L\left(\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]\right)=\left[\begin{array}{c}x y \\ z\end{array}\right]+\left[\begin{array}{c}x^{\prime} y^{\prime} \\ z^{\prime}\end{array}\right]=\left[\begin{array}{c}x y+x^{\prime} y^{\prime} \\ z+z^{\prime}\end{array}\right]$.
As $\left(x+x^{\prime}\right)\left(y+y^{\prime}\right) \neq x y+x^{\prime} y^{\prime}$ (for example take $x=x^{\prime}=y=y^{\prime}=1$), these are not equal and this property fails.

The second property is $L(r \mathbf{v})=r L(\mathbf{v})$. Let $\mathbf{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$. Then $L(r \mathbf{v})=$ $L\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=L\left(\left[\begin{array}{l}r x \\ r y \\ r z\end{array}\right]\right)=\left[\begin{array}{c}r x r y \\ r z\end{array}\right]$. The other side is $r L(\mathbf{v})=r L\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=$ $r\left[\begin{array}{c}x y \\ z\end{array}\right]=\left[\begin{array}{c}r x y \\ z\end{array}\right]$. Then $r x r y \neq r x y$ (for example take $r=2, x=y=1$), so these are not equal and this property also fails.
(b) $L: M_{23} \rightarrow M_{32}$ by $L(A)=A^{T}$

This is a linear transformation. Note that taking the transpose swaps the number of rows and columns, so the transpose of a 2×3 matrix is 3×2, so the result of this function applied to things in M_{23} is in M_{32}. To check that it's a linear transformation, check the two properties using the properties of transpose. If A, B are in M_{23} then $L(A+B)=(A+B)^{T}=A^{T}+B^{T}=L(A)+L(B)$
so the first property is satisfied. If A is a 2×3 matrix and r is a scalar, then $L(r A)=(r A)^{T}=r A^{T}=r L(A)$ so the second property is also satisfied.
4. Let $L: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation $L\left(\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]\right)=\left[\begin{array}{c}x+2 z \\ y-w \\ 3 w+z+x\end{array}\right]$. Find the standard matrix representing L.

We check what L does to the standard basis for \mathbb{R}^{4} to get the columns of this matrix.

$$
L\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], L\left(\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], L\left(\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right], L\left(\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
-1 \\
3
\end{array}\right]
$$

The standard matrix representing L is $\left[\begin{array}{cccc}1 & 0 & 2 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & 3\end{array}\right]$.

