Book Problems:
Section 4.8 \# 3, 5, 11, 15, 27
Section 6.1 \# 1, 11b, 12, 15, 16

Additional Problems:

1. Let S be the following ordered basis for $\mathbb{R}^{3} . S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$.
(a) Let $\mathbf{v}=\left[\begin{array}{c}4 \\ -3 \\ 2\end{array}\right]$. Find $[\mathbf{v}]_{S}$, the coordinate vector of \mathbf{v} with respect to S.
(b) Suppose \mathbf{w} is a vector in \mathbb{R}^{3} and $[\mathbf{w}]_{S}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Find \mathbf{w}.
2. Let $S=\left\{1, t, t^{2}\right\}$ and $T=\left\{t-1, t^{2}+1, t\right\}$. These are both ordered bases for P_{2}. Let $p(t)=4 t^{2}-5 t+3$.
(a) Find $[p(t)]_{S}$ and $[p(t)]_{T}$.
(b) Find $P_{S \leftarrow T}$, the transition matrix from T to S.
(c) Find $Q_{T \leftarrow S}$, the transition matrix from S to T.
(d) Verify that $[p(t)]_{S}=P_{S \leftarrow T}[p(t)]_{T}$ and $[p(t)]_{T}=Q_{T \leftarrow S}[p(t)]_{S}$.
(e) How are $P_{S \leftarrow T}$ and $Q_{T \leftarrow S}$ related? Hint: multiply them together.
3. For each of the following functions, determine if it is a linear transformation.
(a) $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $L\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x y \\ z\end{array}\right]$
(b) $L: M_{23} \rightarrow M_{32}$ by $L(A)=A^{T}$
4. Let $L: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation $L\left(\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]\right)=\left[\begin{array}{c}x+2 z \\ y-w \\ 3 w+z+x\end{array}\right]$. Find the standard matrix representing L.
