Due: Tues, April 7

Find

Homework 9

Book Problems: Section 4.8 # 3, 5, 11, 15, 27Section 6.1 # 1, 11b, 12, 15, 16

Additional Problems:

1. Let S be the following ordered basis for \mathbb{R}^3 . $S = \left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix} \right\}.$

(a) Let
$$\mathbf{v} = \begin{bmatrix} 4 \\ -3 \\ 2 \end{bmatrix}$$
. Find $[\mathbf{v}]_S$, the coordinate vector of \mathbf{v} with respect to S .

(b) Suppose \mathbf{w} is a vector in \mathbb{R}^3 and $[\mathbf{w}]_S = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$. Find \mathbf{w} .

- 2. Let $S = \{1, t, t^2\}$ and $T = \{t 1, t^2 + 1, t\}$. These are both ordered bases for P_2 . Let $p(t) = 4t^2 - 5t + 3$.
 - (a) Find $[p(t)]_S$ and $[p(t)]_T$.
 - (b) Find $P_{S\leftarrow T}$, the transition matrix from T to S.
 - (c) Find $Q_{T \leftarrow S}$, the transition matrix from S to T.
 - (d) Verify that $[p(t)]_S = P_{S \leftarrow T}[p(t)]_T$ and $[p(t)]_T = Q_{T \leftarrow S}[p(t)]_S$.
 - (e) How are $P_{S\leftarrow T}$ and $Q_{T\leftarrow S}$ related? Hint: multiply them together.
- 3. For each of the following functions, determine if it is a linear transformation.

(a)
$$L : \mathbb{R}^3 \to \mathbb{R}^2$$
 by $L\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} xy \\ z \end{bmatrix}$
(b) $L : M_{23} \to M_{32}$ by $L(A) = A^T$

4. Let
$$L : \mathbb{R}^4 \to \mathbb{R}^3$$
 be the linear transformation $L\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{bmatrix} x+2z \\ y-w \\ 3w+z+x \end{bmatrix}$.

the standard matrix representing L.