Homework 8 Solutions to Additional Problems:

1. For each of the following set, determine if it is orthogonal, orthonormal, or neither.
(a) $\left\{\left[\begin{array}{c}2 / 7 \\ 6 / 7 \\ -3 / 7\end{array}\right],\left[\begin{array}{l}9 / \sqrt{146} \\ 1 / \sqrt{146} \\ 8 / \sqrt{146}\end{array}\right]\right\}$

This set it orthonormal. The dot product is $\left[\begin{array}{c}2 / 7 \\ 6 / 7 \\ -3 / 7\end{array}\right] \cdot\left[\begin{array}{c}9 / \sqrt{146} \\ 1 / \sqrt{146} \\ 8 / \sqrt{146}\end{array}\right]=\frac{1}{7 \sqrt{146}}\left[\begin{array}{c}2 \\ 6 \\ -3\end{array}\right]$. $\left[\begin{array}{l}9 \\ 1 \\ 8\end{array}\right]=\frac{1}{7 \sqrt{146}}((2)(9)+(6)(1)+(-3)(8))=0$ so the two vectors are orthogonal. The length of the first vector is $\frac{1}{7} \sqrt{2^{2}+6^{2}+(-3)^{2}}=\frac{1}{7} \sqrt{49}=1$ and the length of the second is $\frac{1}{\sqrt{146}} \sqrt{9^{2}+1^{2}+8^{2}}=1$. They are both length one so the set is orthonormal.
(b) $\left\{\left[\begin{array}{l}1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right],\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ -1 / 2 \\ -1 / 2\end{array}\right],\left[\begin{array}{l}-1 / 2 \\ -1 / 2 \\ -1 / 2 \\ -1 / 2\end{array}\right]\right\}$

This set is neither. It is not orthogonal because the first and third vector have dot product equal to 1 , not 0 . It cannot be orthonormal unless it is orthogonal, so it is neither.
(c) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right]\right\}$

This set is orthogonal. The dot product of any two of these is 0 (there are 3 pairs to check) so it is orthogonal. The vectors are length $\sqrt{2}$ though so the set is not orthonormal.
2. Verify that the set $S=\left\{\left[\begin{array}{l}1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right],\left[\begin{array}{c}2 / \sqrt{6} \\ -1 / \sqrt{6} \\ -1 / \sqrt{6}\end{array}\right],\left[\begin{array}{c}0 \\ 1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]\right\}$ is an orthonormal basis for \mathbb{R}^{3}. Use dot products to write the vector $\left[\begin{array}{c}7 \\ -2 \\ 1\end{array}\right]$ as a linear combination of the vectors in S.
First check that it's orthogonal.
$\left[\begin{array}{l}1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right] \cdot\left[\begin{array}{c}2 / \sqrt{6} \\ -1 / \sqrt{6} \\ -1 / \sqrt{6}\end{array}\right]=\frac{1}{\sqrt{3} \sqrt{6}}((1)(2)+(1)(-1)+(1)(-1))=0$
$\left[\begin{array}{l}1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right] \cdot\left[\begin{array}{c}0 \\ 1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]=\frac{1}{\sqrt{3} \sqrt{2}}((1)(0)+(1)(1)+(1)(-1))=0$
$\left[\begin{array}{c}2 / \sqrt{6} \\ -1 / \sqrt{6} \\ -1 / \sqrt{6}\end{array}\right] \cdot\left[\begin{array}{c}0 \\ 1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]=\frac{1}{\sqrt{6} \sqrt{2}}((2)(0)+(-1)(1)+(-1)(-1))=0$
All pairs of distinct vectors are orthogonal, so the set is orthogonal. The lengths are $\frac{1}{\sqrt{3}} \sqrt{1^{2}+1^{2}+1^{2}}=1, \frac{1}{\sqrt{6}} \sqrt{2^{2}+(-1)^{2}+(-1)^{2}}=1$ and $\frac{1}{\sqrt{2}} \sqrt{0^{2}+1^{2}+(-1)^{2}}=1$. The vectors are all length 1 , so the set is orthonormal.

Any set of nonzero vectors which is orthogonal is linearly independent, so S is a linearly independent set of 3 vectors in \mathbb{R}^{3} so it is a basis for \mathbb{R}^{3}.

To write $\left[\begin{array}{c}7 \\ -2 \\ 1\end{array}\right]$ as a linear combination, just take its dot product with each of the vectors in S to get the coefficients. The dot products are: $\left[\begin{array}{c}7 \\ -2 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right]=$ $\frac{6}{\sqrt{3}},\left[\begin{array}{c}7 \\ -2 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}2 / \sqrt{6} \\ -1 / \sqrt{6} \\ -1 / \sqrt{6}\end{array}\right]=\frac{15}{\sqrt{6}}$, and $\left[\begin{array}{c}7 \\ -2 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}0 \\ 1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]=-\frac{3}{\sqrt{2}}$. We thus get that $\left[\begin{array}{c}7 \\ -2 \\ 1\end{array}\right]=\frac{6}{\sqrt{3}}\left[\begin{array}{l}1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right]+\frac{15}{\sqrt{6}}\left[\begin{array}{c}2 / \sqrt{6} \\ -1 / \sqrt{6} \\ -1 / \sqrt{6}\end{array}\right]-\frac{3}{\sqrt{2}}\left[\begin{array}{c}0 \\ 1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$.
3. Let $\mathbf{v}=\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right]$. Let W be the set of all vectors in \mathbb{R}^{3} which are orthogonal to \mathbf{v}.

Show that W is a subspace of \mathbb{R}^{3}. Find a basis for W and the dimension of W.

The vectors orthogonal to \mathbf{v} will form a plane though the origin (with normal vector \mathbf{v}) so W is a 2 -dimensional subspace of \mathbb{R}^{3}.

A vector $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ is in W if and only if $3 a-b+c=0$. The set W is therefore the set
of vectors of the form $\left[\begin{array}{c}a \\ b \\ -3 a+b\end{array}\right]=a\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]+b\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ so $W=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$. W is a span of vectors in \mathbb{R}^{3} so it is a subspace of \mathbf{R}^{3}. The two vectors spanning W are linearly independent so the set $\left\{\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ is a basis for W and W is 2-dimensional.

Note: You can also show W is a subspace by showing it is nonempty and closed under addition and scalar multiplication. However it is probably easier in this case to show that W is a span of vectors and use that spans are always subspaces (since we need to find a basis anyway).
4. Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a set of vectors in \mathbb{R}^{n}. Suppose that \mathbf{u} is a vector in \mathbb{R}^{n} which is orthogonal to every vector in S. Is \mathbf{u} orthogonal to every vector in span S ? Why or why not?

Yes. The vectors in span S look like $a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}}+\ldots+a_{k} \mathbf{v}_{\mathbf{k}}$ with a_{i} real numbers. Using the properties of dot product, $\mathbf{u} \cdot\left(a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}}+\ldots+a_{k} \mathbf{v}_{\mathbf{k}}\right)=$ $a_{1}\left(\mathbf{u} \cdot \mathbf{v}_{\mathbf{1}}\right)+a_{2}\left(\mathbf{u} \cdot \mathbf{v}_{\mathbf{2}}\right)+\ldots+a_{k}\left(\mathbf{u} \cdot \mathbf{v}_{\mathbf{k}}\right)$. As \mathbf{u} is orthogonal to all the $\mathbf{v}_{\mathbf{i}}$, the terms in this sum are all 0 's. Therefore $\mathbf{u} \cdot\left(a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}}+\ldots+a_{k} \mathbf{v}_{\mathbf{k}}\right)=0$ and \mathbf{u} is orthogonal to any vector in span S.
5. Find an orthonormal basis for the subspace of \mathbb{R}^{4} with basis $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$. Use Gram-Schmidt process. Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}2 \\ 0 \\ -1 \\ 1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]$. The new basis will be $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$. Take $\mathbf{v}_{\mathbf{1}}=\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$.
Then $\mathbf{v}_{\mathbf{2}}=\mathbf{u}_{\mathbf{2}}-\frac{\mathbf{v}_{1} \cdot \mathbf{u}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}2 \\ 0 \\ -1 \\ 1\end{array}\right]-\frac{2}{2}\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]$.

Then $\mathbf{v}_{\mathbf{3}}=\mathbf{u}_{\mathbf{3}}-\frac{\mathbf{v}_{1} \cdot \mathbf{u}_{\mathbf{3}}}{\mathbf{v}_{1} \cdot \mathbf{v}_{\mathbf{1}}} \mathbf{v}_{\mathbf{1}}-\frac{\mathbf{v}_{2} \cdot \mathbf{u}_{3}}{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}} \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]-\frac{2}{2}\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]-\frac{-1}{4}\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]=\frac{1}{4}\left(\left[\begin{array}{l}4 \\ 4 \\ 4 \\ 0\end{array}\right]-\left[\begin{array}{l}4 \\ 4 \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]\right)=$

$$
\frac{1}{4}\left[\begin{array}{c}
1 \\
-1 \\
3 \\
1
\end{array}\right]
$$

The orthogonal basis you get is $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right], \frac{1}{4}\left[\begin{array}{c}1 \\ -1 \\ 3 \\ 1\end{array}\right]\right\}$. You can also replace $\mathbf{v}_{\mathbf{3}}$ with $4 \mathbf{v}_{\mathbf{3}}$ and it will still be an orthogonal basis. So another possible orthogonal basis is $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 3 \\ 1\end{array}\right]\right\}$. To get an orthonormal basis, divide each vector by its length to get $\left\{\left[\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ -1 / 2 \\ 1 / 2\end{array}\right],\left[\begin{array}{c}1 / \sqrt{12} \\ -1 / \sqrt{12} \\ 3 / \sqrt{12} \\ 1 / \sqrt{12}\end{array}\right]\right\}$.

