Book Problems:
Section 5.1 \# 7, 17, 25
Section 5.3 \# 29, 40
Section 5.4 \# 1, 10, 13, 28

Additional Problems:

1. For each of the following set, determine if it is orthogonal, orthonormal, or neither.
(a) $\left\{\left[\begin{array}{c}2 / 7 \\ 6 / 7 \\ -3 / 7\end{array}\right],\left[\begin{array}{l}9 / \sqrt{146} \\ 1 / \sqrt{146} \\ 8 / \sqrt{146}\end{array}\right]\right\}$
(b) $\left.\left\{\begin{array}{l}1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right],\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ -1 / 2 \\ -1 / 2\end{array}\right],\left[\begin{array}{l}-1 / 2 \\ -1 / 2 \\ -1 / 2 \\ -1 / 2\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right]\right\}$
2. Verify that the set $S=\left\{\left[\begin{array}{l}1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right],\left[\begin{array}{c}2 / \sqrt{6} \\ -1 / \sqrt{6} \\ -1 / \sqrt{6}\end{array}\right],\left[\begin{array}{c}0 \\ 1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]\right\}$ is an orthonormal basis for \mathbb{R}^{3}. Use dot products to write the vector $\left[\begin{array}{c}7 \\ -2 \\ 1\end{array}\right]$ as a linear combination of the vectors in S.
3. Let $\mathbf{v}=\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right]$. Let W be the set of all vectors in \mathbb{R}^{3} which are orthogonal to \mathbf{v}. Show that W is a subspace of \mathbb{R}^{3}. Find a basis for W and the dimension of W.
4. Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a set of vectors in \mathbb{R}^{n}. Suppose that \mathbf{u} is a vector in \mathbb{R}^{n} which is orthogonal to every vector in S. Is u orthogonal to every vector in span S ? Why or why not?
5. Find an orthonormal basis for the 3-dimensional subspace of \mathbb{R}^{4} with basis $S=$ $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$.
