Due: Tues, March 3

Homework 6

Book Problems: Section 4.5 # 3, 13, 20, 24Section 4.6 # 1, 9, 16, 19, 33

Additional Problems:

1. Determine if the set $S = \left\{ \begin{bmatrix} 1\\2\\-1\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\-3\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\3\\1\\1 \end{bmatrix} \right\}$ is linearly independent. If

it is not linearly independent, write one of the vectors in S as a linear combination of the other vectors in S.

- 2. Let V be a vector space and let $S = {\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}}$ be a linearly independent set of vectors in V. Determine if the following sets are linearly independent.
 - (a) $\{\mathbf{v_1},\mathbf{v_2},\mathbf{v_3}\}$
 - (b) $\{\mathbf{v_1}, \mathbf{v_1} + \mathbf{v_2}, \mathbf{v_1} + \mathbf{v_3}, \mathbf{v_4} \mathbf{v_2}\}$
 - (c) $\{\mathbf{v_1} + \mathbf{v_2} + \mathbf{v_3}, \mathbf{v_2} \mathbf{v_3}, \mathbf{v_1} + 2\mathbf{v_2}, \mathbf{v_4}\}$
- 3. Let $S = {\mathbf{v_1}, \mathbf{v_2}}$ be a set of nonzero vectors in a vector space V. Suppose **w** is a vector in V and that $\mathbf{w} = 5\mathbf{v_1} \mathbf{v_2}$ and $\mathbf{w} = 3\mathbf{v_1} 2\mathbf{v_2}$ (so **w** can be written as a linear combination of the vectors in S in more than one way).
 - (a) Prove that S is not linearly independent.
 - (b) What can you say about the dimension of span S?
- 4. Find a basis for and the dimension of each of the following subspaces.
 - (a) The subspace of \mathbb{R}^5 which consists of vectors of the form $\begin{vmatrix} 4t + s \\ t s \\ s \end{vmatrix}$ where s, t

are any real numbers.

(b) The subspace of M_{23} which consists of matrices of the form $\begin{bmatrix} a-b & c-d & 3a \\ -b & 0 & d-c \end{bmatrix}$ where a, b, c, d are any real numbers.

(c) The subspace of P_2 which consists of polynomials $at^2 + bt + c$ with a + b + c = 0.