Book Problems:
Section 4.5 \# 3, 13, 20, 24
Section 4.6 \# 1, 9, 16, 19, 33

Additional Problems:

1. Determine if the set $S=\left\{\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}0 \\ -3 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 1 \\ 1\end{array}\right]\right\}$ is linearly independent. If it is not linearly independent, write one of the vectors in S as a linear combination of the other vectors in S.
2. Let V be a vector space and let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}\right\}$ be a linearly independent set of vectors in V. Determine if the following sets are linearly independent.
(a) $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$
(b) $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}-\mathbf{v}_{\mathbf{2}}\right\}$
(c) $\left\{\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}+\mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{2}}-\mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{1}}+2 \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{4}}\right\}$
3. Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ be a set of nonzero vectors in a vector space V. Suppose \mathbf{w} is a vector in V and that $\mathbf{w}=5 \mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}$ and $\mathbf{w}=3 \mathbf{v}_{\mathbf{1}}-2 \mathbf{v}_{\mathbf{2}}$ (so \mathbf{w} can be written as a linear combination of the vectors in S in more than one way).
(a) Prove that S is not linearly independent.
(b) What can you say about the dimension of span S ?
4. Find a basis for and the dimension of each of the following subspaces.
(a) The subspace of \mathbb{R}^{5} which consists of vectors of the form $\left[\begin{array}{c}4 t+s \\ t-s \\ t \\ 3 s \\ s\end{array}\right]$ where s, t are any real numbers.
(b) The subspace of M_{23} which consists of matrices of the form $\left[\begin{array}{ccc}a-b & c-d & 3 a \\ -b & 0 & d-c\end{array}\right]$ where a, b, c, d are any real numbers.
(c) The subspace of P_{2} which consists of polynomials $a t^{2}+b t+c$ with $a+b+c=0$.
