
Homework 5 Solutions to Additional Problems

1. Let V be the set of real numbers and define the operations ⊕ and � to be the
following.

u⊕ v = u + v − 3 for u,v in V
r � u = r(u− 3) + 3 for u in V and r a real number.

Prove that V with the operations ⊕ and � is a real vector space.

To do this, we must check all 10 properties (a,b,1-8) from the definition of a vector
space.

Properties a,b (Closed under ⊕ and �): For any u,v in V , u and v are real num-
bers so u⊕ v = u + v − 3 is also a real number so u⊕ v is in V . This shows V is
closed under ⊕. For any u in V and real number r, r � u = r(u− 3) + 3 is also a
real number so r � u is in V . This shows V is closed under �.

Property 1: u⊕ v = u + v − 3 and v ⊕ u = v + u− 3. These are equal.

Property 2: u⊕ (v⊕w) = u⊕ (v+w− 3) = u+ (v+w− 3)− 3 = u+v+w− 6
and (u ⊕ v) ⊕ w = (u + v − 3) ⊕ w = (u + v − 3) + w − 3 = u + v + w − 6 so
these are equal.

Property 3: The zero vector is 3 since u⊕ 3 = 3⊕ u = 3 + u− 3 = u for all u.

Property 4: The negative of a vector u is (−1)(u − 6) since u ⊕ (−1)(u − 6) =
u + (−1)(u− 6)− 3 = 3 and 3 is the zero vector.

Property 5: c�(u⊕v) = c�(u+v−3) = c(u+v−3−3)+3 = cu+cv−6c+3 and
c�u⊕ c�v = (c(u−3) + 3)⊕ (c(v−3) + 3) = (c(u−3) + 3) + (c(v−3) + 3)−3 =
cu + cv − 6c + 3 so these are equal.

Property 6: (c + d)� u = (c + d)(u− 3) + 3 and c� u⊕ d� u = (c(u− 3) + 3)⊕
(d(u− 3) + 3) = (c(u− 3) + 3) + (d(u− 3) + 3)− 3 = (c + d)(u− 3) + 3 so these
are equal.

Property 7: c�(d�u) = c�(d(u−3)+3) = c(d(u−3)+3−3)+3 = cd(u−3)+3 =
(cd)⊕ u

Property 8: 1� u = 1(u− 3) + 3 = u.

2. Determine which of the following are subspaces. You may assume the operations
are the usual addition and scalar multiplication in Rn and P .
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(a) Let V be the set of 2-vectors

[
x
y

]
with |y| = |x|. Is V a subspace of R2?

This is not a subspace. It is not closed under addition. For example, the

vectors

[
1
1

]
and

[
1
−1

]
are in V but their sum is

[
2
0

]
which is not in V .

Note: V is closed under scalar multiplication. We do not need to check this
however since the fact that it’s not closed under addition already shows it is
not a subspace of R2.

(b) Let V be the set of polynomials p(t) such that
∫ 1

0
p(t) dt = 0. Is V a subspace

of P?

This is a subspace of P . To prove this, we check that V is not the empty set
and that V is closed under addition and scalar multiplication.

V is not the empty set because it contains the zero vector of P (the function
p(t) = 0 which is 0 everywhere).

To check if it is closed under addition, take p(t) and q(t) to be polynomials
in V and see if p(t) + q(t) is in V . As p(t) and q(t) are in V , we have that∫ 1

0
p(t) dt = 0 and

∫ 1

0
q(t) dt = 0. Using properties of integrals, p(t) + q(t) is

also in V because
∫ 1

0
p(t) + q(t) dt =

∫ 1

0
p(t) dt +

∫ 1

0
p(t) dt = 0 + 0 = 0. V is

therefore closed under addition.

To check if V is closed under scalar multiplication, take p(t) to be a polyno-

mial in V and r to be a real number. As p(t) is in V ,
∫ 1

0
p(t) dt = 0. The the

scalar multiple rp(t) is also in V because
∫ 1

0
rp(t) dt = r

∫ 1

0
p(t) dt = r0 = 0.

This shows that V is closed under scalar multiplication.

(c) Let V be the set of polynomials p(t) such that p(0) = 5. Is V a subspace of P?

This is not a subspace of P . It is not closed under addition or scalar multi-
plication. If p(t) and q(t) are in V , then p(0) = 5 and q(0) = 5. Their sum
p(t) + q(t) will be 10 when t = 0, so it will not be in V . For example, t + 5
and t2 + 3t + 5 are both in V , but their sum t2 + 4t + 10 is not.

You can also show this is not a subspace by showing that is not closed under
scalar multiplication, or by showing that it does not contain the zero vector.
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(d) Let A be a fixed 3 × 3 matrix. Let V be the set of 3-vectors b such that
Ax = b is a consistent linear system. Is V a subspace of R3?

This is a subspace. We first note that V is nonempty as Ax = 0 is consistent
so 0 is in V .

If b and c are in V , then the systems Ax = b and Ax = c are both consistent.
This means that they both have at least one solution (possibly different).
Let v1 be a solution to Ax = b and v2 be a solution to Ax = c. Then
Av1 = b and Av2 = c. The linear system Ax = b+ c has solution v1 +v2 as
A(v1 +v2) = Av1 +Av2 = b+ c. Then Ax = b+ c has at least one solution,
so it is consistent and therefore b + c is in V . This shows that V is closed
under addition.

If b is in V and r is a real number, then the systems Ax = b is consistent.
Let v1 be a solution to Ax = b, so Av1 = b. The linear system Ax = rb
has solution rv1 as A(rv1) = r(Av1) = rb. Then Ax = rb has at least one
solution, so it is consistent and therefore rb is in V . This shows that V is
closed under scalar multiplication.

3. Let S =


1

1
1

 ,

1
0
2

 ,

2
1
3

 ,

4
1
3

. Does S span R3? Either prove that S spans

R3, or find a vector in R3 which is not in the span of S.

The span of S is all linear combinations of vectors in S, so it is all vectors of the

form x

1
1
1

 + y

1
0
2

 + z

2
1
3

 + w

4
1
3

, where x, y, z, w are real numbers. Given

any vector

ab
c

 in R3, to see if it’s in the span of S we want to see if

ab
c

 =

x

1
1
1

 + y

1
0
2

 + z

2
1
3

 + w

4
1
3

 for some x, y, z, w. This gives us the linear sys-

tem with augmented matrix

 1 1 2 4 a
1 0 1 1 b
1 2 3 3 c

. The row operations r2 − r1 →

r2, r3 − r1 → r3, r2 + r3 → r2, r2 ↔ r3, (−1/2)r3 → r3 take this to the matrix
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 1 1 2 4 a
0 1 1 1 c− a
0 0 0 1 (−1/2)(b + c− 2a)

, which is in REF. No matter what we choose

for a, b, c, this system will always have infinitely many solutions. Therefore all vec-

tors

ab
c

 in R3 are in the span of S, so S spans R3.

4. Let W be the set of 3× 3 skew symmetric matrices. Find a set S of 3× 3 matrices
such that W = span S. Is W a subspace of M33?

The 3×3 skew symmetric matrices are all matrices of the form

 0 a b
−a 0 c
−b −c 0

, where

a, b, c can be any real numbers. We can rewrite these matrices as

 0 a b
−a 0 c
−b −c 0

 =

a

 0 1 0
−1 0 0
0 0 0

+ b

 0 0 1
0 0 0
−1 0 0

+ c

0 0 0
0 0 1
0 −1 0

. From this, we see that all matrices

in W are linear combinations of the set of matrices

S =


 0 1 0
−1 0 0
0 0 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

0 0 0
0 0 1
0 −1 0

 .

Therefore S is a spanning set for W . Note that spanning sets are not unique and
there are lots of other possible answers for this problem, but this set is perhaps the
easiest one to find.

W is a subspace of M33 because W = span S, where S is a set of elements from M33.
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