Book Problems:
Section 4.2 \# 1, 11, 17
Section 4.3 \# 4, 5, 17, 25
Section 4.4 \# 2, 5, 9

Additional Problems:

1. Let V be the set of real numbers and define the operations \oplus and \odot to be the following.
$\mathbf{u} \oplus \mathbf{v}=\mathbf{u}+\mathbf{v}-3$ for \mathbf{u}, \mathbf{v} in V
$r \odot \mathbf{u}=r(\mathbf{u}-3)+3$ for \mathbf{u} in V and r a real number.

Prove that V with the operations \oplus and \odot is a real vector space.
2. Determine which of the following are subspaces. You may assume the operations are the usual addition and scalar multiplication in \mathbb{R}^{n} and P.
(a) Let V be the set of 2 -vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ with $|y|=|x|$. Is V a subspace of \mathbb{R}^{2} ?
(b) Let V be the set of polynomials $p(t)$ such that $\int_{0}^{1} p(t) d t=0$. Is V a subspace of P ?
(c) Let V be the set of polynomials $p(t)$ such that $p(0)=5$. Is V a subspace of P ?
(d) Let A be a fixed 3×3 matrix. Let V be the set of 3 -vectors \mathbf{b} such that $A \mathbf{x}=\mathbf{b}$ is a consistent linear system. Is V a subspace of \mathbb{R}^{3} ?
3. Let $S=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right]\right\}$. Does S span \mathbb{R}^{3} ? Either prove that S spans \mathbb{R}^{3}, or find a vector in \mathbb{R}^{3} which is not in the span of S.
4. Let W be the set of 3×3 skew symmetric matrices. Find a set S of 3×3 matrices such that $W=\operatorname{span} S$. Is W a subspace of M_{33} ?

