Due: Tues, February 24

Homework 5

Book Problems: Section 4.2 # 1, 11, 17 Section 4.3 # 4, 5, 17, 25 Section 4.4 # 2, 5, 9

Additional Problems:

1. Let V be the set of real numbers and define the operations \oplus and \odot to be the following.

 $\mathbf{u} \oplus \mathbf{v} = \mathbf{u} + \mathbf{v} - 3$ for \mathbf{u}, \mathbf{v} in V $r \odot \mathbf{u} = r(\mathbf{u} - 3) + 3$ for \mathbf{u} in V and r a real number.

Prove that V with the operations \oplus and \odot is a real vector space.

- 2. Determine which of the following are subspaces. You may assume the operations are the usual addition and scalar multiplication in \mathbb{R}^n and P.
 - (a) Let V be the set of 2-vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ with |y| = |x|. Is V a subspace of \mathbb{R}^2 ?
 - (b) Let V be the set of polynomials p(t) such that $\int_0^1 p(t) dt = 0$. Is V a subspace of P?
 - (c) Let V be the set of polynomials p(t) such that p(0) = 5. Is V a subspace of P?
 - (d) Let A be a fixed 3×3 matrix. Let V be the set of 3-vectors **b** such that $A\mathbf{x} = \mathbf{b}$ is a consistent linear system. Is V a subspace of \mathbb{R}^3 ?

3. Let $S = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\3 \end{bmatrix}, \begin{bmatrix} 4\\1\\3 \end{bmatrix} \right\}$. Does S span \mathbb{R}^3 ? Either prove that S spans \mathbb{R}^3 , or find a vector in \mathbb{R}^3 which is not in the span of S.

4. Let W be the set of 3×3 skew symmetric matrices. Find a set S of 3×3 matrices such that W = span S. Is W a subspace of M_{33} ?