Book Problems:
Section 3.1 \# 5, 13, 15
Section 3.2 \# 1, 10, 11, 34
For $3.2 \# 1$, you may use any of the methods from class to compute the determinant.
Additional Problems:

1. Let $A=\left[\begin{array}{cccc}2 & 2 & -2 & 1 \\ 0 & 1 & -1 & 0 \\ 6 & 0 & 0 & 7 \\ 0 & 0 & -3 & 0\end{array}\right]$. Compute the determinant of A using three different methods.
(a) The definition of the determinant
(b) Reduction to triangular form
(c) Cofactor expansion
2. Suppose A and B are 3×3 matrices such that $B^{-1}=\frac{1}{5} A^{2}$. If $\operatorname{det}(A)=2$, what is $\operatorname{det}(B)$?
3. Let A be a square matrix. Determine if the following are true or false. Give a proof or counterexample.
(a) If $A A^{T}=I$, then $\operatorname{det}(A)= \pm 1$.
(b) If $A+A^{T}=I$, then $\operatorname{det}(A)=\frac{1}{2}$.
4. Let A be a 5×5 matrix with determinant 5 .
(a) What is the RREF of A ?
(b) Let $\mathbf{b}=\left[\begin{array}{l}5 \\ 5 \\ 5 \\ 5 \\ 5\end{array}\right]$. How many solutions are there to the linear system $A \mathbf{x}=\mathbf{b}$?
