Homework 3 Solutions to Additional Problems:

1. Let A and B be $n \times n$ upper triangular matrices. Determine if the following matrices are upper triangular, lower triangular, both, or neither.
(a) $(A+B)^{T}$

This is lower triangular. The sum $A+B$ is upper triangular, then the transpose of an upper triangular matrix is lower triangular.
(b) $A B$

This is upper triangular. The i, j-th entry of $A B$ is $\sum_{k=1}^{n} a_{i k} b_{k j}$. Suppose we are looking at an entry below the diagonal, so $i>j$. Then if $k<i$, the term $a_{i k}=0$ and if $k \geq i>j$ the term $b_{k j}=0$ (using that A and B are upper triangular). Therefore all entries in the sum are 0 so the i, j-th entry of $A B$ is 0 for $i>j$ and $A B$ is upper triangular.
(c) $A B^{T}$

This is neither. For example, $A=B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ has $A B^{T}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=$ $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ which is neither upper triangular nor lower triangular.
2. Let $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(a) Compute D^{2} and D^{3}.

$$
D^{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 9
\end{array}\right], D^{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 27
\end{array}\right]
$$

(b) Compute D^{100}. You do not need to simplify the entries of D^{100}.

$$
D^{100}=\left[\begin{array}{ccc}
1^{100} & 0 & 0 \\
0 & 2^{100} & 0 \\
0 & 0 & 3^{100}
\end{array}\right]
$$

(c) If E is an $n \times n$ diagonal matrix with diagonal entries $e_{1}, e_{2}, \ldots, e_{n}$, what can you say about the matrix E^{k} for k a positive integer?
E^{k} is also an $n \times n$ diagonal matrix. The diagonal entries of E^{k} are $e_{1}{ }^{k}, e_{2}{ }^{k}, \ldots, e_{n}{ }^{k}$.
3. Let A be an $n \times n$ matrix
(a) Prove that $A+A^{T}$ is symmetric and $A-A^{T}$ is skew symmetric.

To show that $A+A^{T}$ is symmetric, show that its transpose is equal to itself. Using the properties of transpose, $\left(A+A^{T}\right)^{T}=A^{T}+\left(A^{T}\right)^{T}=A^{T}+A=A+A^{T}$. To show that $A-A^{T}$ is skew symmetric, show that its transpose it equal to its negative. $\left(A-A^{T}\right)^{T}=A^{T}-\left(A^{T}\right)^{T}=A^{T}-A=-\left(A-A^{T}\right)$.
(b) Is the matrix $\left(A+A^{T}\right)\left(A-A^{T}\right)$ symmetric, skew symmetric, both, or neither? Either give a proof that it is always symmetric, skew symmetric, or both or find a specific example of a matrix A for which $\left(A+A^{T}\right)\left(A-A^{T}\right)$ is neither.

This is neither. If we try taking the transpose of this matrix, we get $((A+$ $\left.\left.A^{T}\right)\left(A-A^{T}\right)\right)^{T}=\left(A-A^{T}\right)^{T}\left(A+A^{T}\right)^{T}=-\left(A-A^{T}\right)\left(A+A^{T}\right)$. It almost looks like it will be skew symmetric, but not quite since $\left(A+A^{T}\right)\left(A-A^{T}\right)$ may not be the same as $\left(A-A^{T}\right)\left(A+A^{T}\right)$. Since it is not obviously symmetric or skew symmetric, try an example. Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. Then $A+A^{T}=\left[\begin{array}{ll}2 & 2 \\ 2 & 6\end{array}\right]$ and $A-A^{T}=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$, so $\left(A+A^{T}\right)\left(A-A^{T}\right)=\left[\begin{array}{ll}2 & 2 \\ 2 & 6\end{array}\right]\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]=\left[\begin{array}{cc}-4 & 4 \\ -12 & 4\end{array}\right] \cdot$ We see from this example that $\left(A+A^{T}\right)\left(A-A^{T}\right)$ is not always symmetric, skew symmetric, or both.
4. Suppose A and B are invertible 3×3 matrices and that $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 3 & 1 \\ -1 & 1 & 0\end{array}\right]$ and $B^{-1}=\left[\begin{array}{ccc}1 & 0 & 2 \\ -2 & 0 & 3 \\ 1 & 7 & 5\end{array}\right]$. Answer the following without computing A^{-1} or B.
(a) Find $\left(A^{-1} B^{T}\right)^{-1}$.

Using the properties for inverses, $\left(A^{-1} B^{T}\right)^{-1}=\left(B^{T}\right)^{-1}\left(A^{-1}\right)^{-1}=\left(B^{-1}\right)^{T} A$. We can easily compute this from the given information by taking one transpose and one product. $\left(A^{-1} B^{T}\right)^{-1}=\left(B^{-1}\right)^{T} A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & 0 & 7 \\ 2 & 3 & 5\end{array}\right]\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 3 & 1 \\ -1 & 1 & 0\end{array}\right]=$
$\left[\begin{array}{ccc}-4 & -2 & 0 \\ -7 & 7 & 0 \\ 3 & 20 & 7\end{array}\right]$.
(b) Let $\mathbf{c}=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$. Find all solutions to the linear system $A^{-1} B^{T} \mathbf{x}=\mathbf{c}$.

If we multiply both sides of the equation $A^{-1} B^{T} \mathbf{x}=\mathbf{c}$ on the left by $\left(A^{-1} B^{T}\right)^{-1}$ we get $I \mathbf{x}=\left(A^{-1} B^{T}\right)^{-1} \mathbf{c}$ which simplifies to $\mathbf{x}=\left(A^{-1} B^{T}\right)^{-1} \mathbf{c}$. There is therefore exactly one solution, it is $\left(A^{-1} B^{T}\right)^{-1} \mathbf{c}$. Using the result from part (b), this is $\left[\begin{array}{ccc}-4 & -2 & 0 \\ -7 & 7 & 0 \\ 3 & 20 & 7\end{array}\right]\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]=\left[\begin{array}{c}-6 \\ 0 \\ 9\end{array}\right]$.
5. Let $A=\left[\begin{array}{cccc}-2 & 0 & -5 & 2 \\ 1 & 0 & 3 & -1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 5 & 0\end{array}\right]$. Find A^{-1} using the methods of Section 2.3. Check your answer by computing $A A^{-1}$ or $A^{-1} A$.

Start with $[A: I]$ and do row operations to get to $\left[I: A^{-1}\right]$.

$$
\begin{aligned}
& {\left[\begin{array}{cccc:cccc}
-2 & 0 & -5 & 2 & 1 & 0 & 0 & 0 \\
1 & 0 & 3 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 5 & 0 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& r_{1} \leftrightarrow r_{2} \\
& {\left[\begin{array}{cccc:cccc}
1 & 0 & 3 & -1 & 0 & 1 & 0 & 0 \\
-2 & 0 & -5 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 5 & 0 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& r_{2}+2 r_{1} \rightarrow r_{2} \\
& r_{4}-r_{1} \rightarrow r_{4} \\
& {\left[\begin{array}{cccc:cccc}
1 & 0 & 3 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & -1 & 0 & 1
\end{array}\right]} \\
& r_{2} \leftrightarrow r_{3}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc:cccc}
1 & 0 & 3 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & -1 & 0 & 1
\end{array}\right]} \\
& r_{4}-r_{2} \rightarrow r_{4} \\
& {\left[\begin{array}{cccc:cccc}
1 & 0 & 3 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & -1 & 1
\end{array}\right]} \\
& r_{1}+r_{4} \rightarrow r_{1} \\
& {\left[\begin{array}{cccc:cccc}
1 & 0 & 3 & 0 & 0 & 0 & -1 & 1 \\
0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & -1 & 1
\end{array}\right]} \\
& r_{1}-3 r_{3} \rightarrow r_{1} \\
& r_{2}-2 r_{3} \rightarrow r_{2}
\end{aligned}
$$

$$
\left[\begin{array}{cccc:cccc}
1 & 0 & 0 & 0 & -3 & -6 & -1 & 1 \\
0 & 1 & 0 & 0 & -2 & -4 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & -1 & 1
\end{array}\right]
$$

$$
A^{-1}=\left[\begin{array}{cccc}
-3 & -6 & -1 & 1 \\
-2 & -4 & 1 & 0 \\
1 & 2 & 0 & 0 \\
0 & -1 & -1 & 1
\end{array}\right]
$$

Check: $A A^{-1}=\left[\begin{array}{cccc}-2 & 0 & -5 & 2 \\ 1 & 0 & 3 & -1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 5 & 0\end{array}\right]\left[\begin{array}{cccc}-3 & -6 & -1 & 1 \\ -2 & -4 & 1 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & -1 & -1 & 1\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]=I$.

