Homework 3 Solutions to Additional Problems:

- 1. Let A and B be $n \times n$ upper triangular matrices. Determine if the following matrices are upper triangular, lower triangular, both, or neither.
 - (a) $(A+B)^T$

This is lower triangular. The sum A+B is upper triangular, then the transpose of an upper triangular matrix is lower triangular.

(b) AB

This is upper triangular. The *i*, *j*-th entry of AB is $\sum_{k=1}^{n} a_{ik}b_{kj}$. Suppose we are looking at an entry below the diagonal, so i > j. Then if k < i, the term $a_{ik} = 0$ and if $k \ge i > j$ the term $b_{kj} = 0$ (using that A and B are upper triangular). Therefore all entries in the sum are 0 so the *i*, *j*-th entry of AB is 0 for i > j and AB is upper triangular.

(c) AB^T

This is neither. For example, $A = B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ has $AB^T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ which is neither upper triangular nor lower triangular. 2. Let $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. (a) Compute D^2 and D^3 .

$$D^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix}, D^{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 27 \end{bmatrix}$$

(b) Compute D^{100} . You do not need to simplify the entries of D^{100} .

$$D^{100} = \begin{bmatrix} 1^{100} & 0 & 0\\ 0 & 2^{100} & 0\\ 0 & 0 & 3^{100} \end{bmatrix}.$$

(c) If E is an $n \times n$ diagonal matrix with diagonal entries $e_1, e_2, ..., e_n$, what can you say about the matrix E^k for k a positive integer?

 E^k is also an $n \times n$ diagonal matrix. The diagonal entries of E^k are $e_1^k, e_2^k, ..., e_n^k$.

- 3. Let A be an $n \times n$ matrix
 - (a) Prove that $A + A^T$ is symmetric and $A A^T$ is skew symmetric.

To show that $A + A^T$ is symmetric, show that its transpose is equal to itself. Using the properties of transpose, $(A+A^T)^T = A^T + (A^T)^T = A^T + A = A + A^T$. To show that $A - A^T$ is skew symmetric, show that its transpose it equal to its negative. $(A - A^T)^T = A^T - (A^T)^T = A^T - A = -(A - A^T)$.

(b) Is the matrix $(A + A^T)(A - A^T)$ symmetric, skew symmetric, both, or neither? Either give a proof that it is always symmetric, skew symmetric, or both or find a specific example of a matrix A for which $(A + A^T)(A - A^T)$ is neither.

This is neither. If we try taking the transpose of this matrix, we get $((A + A^T)(A - A^T))^T = (A - A^T)^T(A + A^T)^T = -(A - A^T)(A + A^T)$. It almost looks like it will be skew symmetric, but not quite since $(A + A^T)(A - A^T)$ may not be the same as $(A - A^T)(A + A^T)$. Since it is not obviously symmetric or skew symmetric, try an example. Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Then $A + A^T = \begin{bmatrix} 2 & 2 \\ 2 & 6 \end{bmatrix}$ and $A - A^T = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$, so $(A + A^T)(A - A^T) = \begin{bmatrix} 2 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} -4 & 4 \\ -12 & 4 \end{bmatrix}$. We see from this example that $(A + A^T)(A - A^T)$ is not always symmetric, skew symmetric, or both.

4. Suppose A and B are invertible 3×3 matrices and that $A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 1 \\ -1 & 1 & 0 \end{bmatrix}$ and

$$B^{-1} = \begin{bmatrix} 1 & 0 & 2 \\ -2 & 0 & 3 \\ 1 & 7 & 5 \end{bmatrix}.$$
 Answer the following without computing A^{-1} or B

(a) Find
$$(A^{-1}B^T)^{-1}$$
.

Using the properties for inverses, $(A^{-1}B^T)^{-1} = (B^T)^{-1}(A^{-1})^{-1} = (B^{-1})^T A$. We can easily compute this from the given information by taking one transpose and one product. $(A^{-1}B^T)^{-1} = (B^{-1})^T A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 7 \\ 2 & 3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 1 \\ -1 & 1 & 0 \end{bmatrix} =$

$$\begin{bmatrix} -4 & -2 & 0 \\ -7 & 7 & 0 \\ 3 & 20 & 7 \end{bmatrix}.$$
(b) Let $\mathbf{c} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$. Find all solutions to the linear system $A^{-1}B^T \mathbf{x} = \mathbf{c}$.

If we multiply both sides of the equation $A^{-1}B^T \mathbf{x} = \mathbf{c}$ on the left by $(A^{-1}B^T)^{-1}$ we get $I\mathbf{x} = (A^{-1}B^T)^{-1}\mathbf{c}$ which simplifies to $\mathbf{x} = (A^{-1}B^T)^{-1}\mathbf{c}$. There is therefore exactly one solution, it is $(A^{-1}B^T)^{-1}\mathbf{c}$. Using the result from part (b), this is $\begin{bmatrix} -4 & -2 & 0 \\ -7 & 7 & 0 \\ 3 & 20 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} -6 \\ 0 \\ 9 \end{bmatrix}$. 5. Let $A = \begin{bmatrix} -2 & 0 & -5 & 2 \\ 1 & 0 & 3 & -1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 5 & 0 \end{bmatrix}$. Find A^{-1} using the methods of Section 2.3. Check

your answer by computing AA^{-1} or $A^{-1}A$.

Start with [A:I] and do row operations to get to $[I:A^{-1}]$.

$\int -2$	0	-5	2 + 1	0	0	0]
1	0	3	$2 \ 1 \\ -1 \ 0$	1	0	0
0	1	2	0 0	0	1	0
L 1	1	5	$\begin{array}{ccc} 0 & \downarrow 0 \\ 0 & \downarrow 0 \end{array}$	0	0	1

 $r_1 \leftrightarrow r_2$

 $\begin{bmatrix} 1 & 0 & 3 & -1 & 0 & 1 & 0 & 0 \\ -2 & 0 & -5 & 2 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & | & 0 & 0 & 1 & 0 \\ 1 & 1 & 5 & 0 & | & 0 & 0 & 0 & 1 \end{bmatrix}$ $r_{2} + 2r_{1} \rightarrow r_{2}$ $r_{4} - r_{1} \rightarrow r_{4}$ $\begin{bmatrix} 1 & 0 & 3 & -1 & | & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & | & 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 & | & 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & | & 0 & -1 & 0 & 1 \end{bmatrix}$

 $r_2 \leftrightarrow r_3$

$$\begin{bmatrix} 1 & 0 & 3 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & -1 & 0 & 1 \end{bmatrix}$$

$$r_4 - r_2 \rightarrow r_4$$

$$\begin{bmatrix} 1 & 0 & 3 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & -1 & 1 \end{bmatrix}$$

$$r_1 + r_4 \rightarrow r_1$$

$$\begin{bmatrix} 1 & 0 & 3 & 0 & 0 & 0 & -1 & 1 \\ 0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & -1 & 1 \end{bmatrix}$$

$$r_1 - 3r_3 \rightarrow r_1$$

$$r_2 - 2r_3 \rightarrow r_2$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & -3 & -6 & -1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & -1 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -3 & -6 & -1 & 1 \\ -2 & -4 & 1 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & -1 & -1 & 1 \end{bmatrix}$$

$$Check: AA^{-1} = \begin{bmatrix} -2 & 0 & -5 & 2 \\ 1 & 0 & 3 & -1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 5 & 0 \end{bmatrix} \begin{bmatrix} -3 & -6 & -1 & 1 \\ -2 & -4 & 1 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & -1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = I.$$