Book Problems:
Section 1.5 \# 12, 21, 37, 50
Section 2.3 \# 5, 9, 29

Additional Problems:

1. Let A and B be $n \times n$ upper triangular matrices. Determine if the following matrices are upper triangular, lower triangular, both, or neither.
(a) $(A+B)^{T}$
(b) $A B$
(c) $A B^{T}$
2. Let $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(a) Compute D^{2} and D^{3}.
(b) Compute D^{100}. You do not need to simplify the entries of D^{100}.
(c) If E is an $n \times n$ diagonal matrix with diagonal entries $e_{1}, e_{2}, \ldots, e_{n}$, what can you say about the matrix E^{k} for k a positive integer?
3. Let A be an $n \times n$ matrix
(a) Prove that $A+A^{T}$ is symmetric and $A-A^{T}$ is skew symmetric.
(b) Is the matrix $\left(A+A^{T}\right)\left(A-A^{T}\right)$ symmetric, skew symmetric, both, or neither? Either give a proof that it is always symmetric, skew symmetric, or both or find a specific example of a matrix A for which $\left(A+A^{T}\right)\left(A-A^{T}\right)$ is neither.
4. Suppose A and B are invertible 3×3 matrices and that $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 3 & 1 \\ -1 & 1 & 0\end{array}\right]$ and $B^{-1}=\left[\begin{array}{ccc}1 & 0 & 2 \\ -2 & 0 & 3 \\ 1 & 7 & 5\end{array}\right]$. Answer the following without computing A^{-1} or B.
(a) Find $\left(A^{-1} B^{T}\right)^{-1}$.
(b) Let $\mathbf{c}=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$. Find all solutions to the linear system $A^{-1} B^{T} \mathbf{x}=\mathbf{c}$.
5. Let $A=\left[\begin{array}{cccc}-2 & 0 & -5 & 2 \\ 1 & 0 & 3 & -1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 5 & 0\end{array}\right]$. Find A^{-1} using the methods of Section 2.3. Check your answer by computing $A A^{-1}$ or $A^{-1} A$.
