Homework 3

Due: Tuesday, February 3

Book Problems: Section 1.5 # 12, 21, 37, 50Section 2.3 # 5, 9, 29

Additional Problems:

- 1. Let A and B be $n \times n$ upper triangular matrices. Determine if the following matrices are upper triangular, lower triangular, both, or neither.
 - (a) $(A+B)^T$
 - (b) *AB*
 - (c) AB^T
- 2. Let $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.
 - (a) Compute D^2 and D^3 .
 - (b) Compute D^{100} . You do not need to simplify the entries of D^{100} .
 - (c) If E is an $n \times n$ diagonal matrix with diagonal entries $e_1, e_2, ..., e_n$, what can you say about the matrix E^k for k a positive integer?
- 3. Let A be an $n \times n$ matrix
 - (a) Prove that $A + A^T$ is symmetric and $A A^T$ is skew symmetric.
 - (b) Is the matrix $(A + A^T)(A A^T)$ symmetric, skew symmetric, both, or neither? Either give a proof that it is always symmetric, skew symmetric, or both or find a specific example of a matrix A for which $(A + A^T)(A - A^T)$ is neither.
- 4. Suppose A and B are invertible 3×3 matrices and that $A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 1 \\ -1 & 1 & 0 \end{bmatrix}$ and

$$B^{-1} = \begin{bmatrix} 1 & 0 & 2 \\ -2 & 0 & 3 \\ 1 & 7 & 5 \end{bmatrix}.$$
 Answer the following without computing A^{-1} or B .
(a) Find $(A^{-1}B^T)^{-1}$.

(b) Let $\mathbf{c} = \begin{bmatrix} 1\\ 1\\ -2 \end{bmatrix}$. Find all solutions to the linear system $A^{-1}B^T \mathbf{x} = \mathbf{c}$. 5. Let $A = \begin{bmatrix} -2 & 0 & -5 & 2 \\ 1 & 0 & 3 & -1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 5 & 0 \end{bmatrix}$. Find A^{-1} using the methods of Section 2.3. Check

your answer by computing AA^{-1} or $A^{-1}A$.