Book Problems:
Section 2.2 \# 1, 5, 15
Section 1.2 \# 10, 11
Section 1.3 \# 13, 23, 28
Section 1.4 \# 3, 29
Additional Problems:
Note: Write your solutions to linear systems as vectors.

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction.
(a) $2 x+y=8$
$3 x+4 y=7$
$x+y=3$
(b) $x+y+z=3$
$2 x+2 y-z=3$
(c) $2 x+y+z=1$
$4 x-3 y+z=7$
$3 x-y+z=2$
2. Let A be an $m \times n$ matrix and \mathbf{b} be an m-vector such that $A \mathbf{x}=\mathbf{b}$ is a consistent linear system. Let \mathbf{x}_{p} be a solution to $A \mathbf{x}=\mathbf{b}$ and let $\mathbf{0}$ be the zero m-vector.
(a) Prove that if \mathbf{x}_{h} is a solution to $A \mathbf{x}=\mathbf{0}$, then $\mathbf{x}_{p}+\mathbf{x}_{h}$ is a solution to $A \mathbf{x}=\mathbf{b}$.
(b) Prove that if \mathbf{x}_{1} is a solution to $A \mathbf{x}=\mathbf{b}$, then $\mathbf{x}_{1}-\mathbf{x}_{p}$ is a solution to $A \mathbf{x}=\mathbf{0}$.
(c) Use the previous two parts to explain why the following statement is true:

The solutions to $A \mathbf{x}=\mathbf{b}$ are exactly the vectors of the form $\mathbf{x}_{p}+\mathbf{x}_{h}$ where \mathbf{x}_{h} is a solution to the homogeneous linear system $A \mathbf{x}=\mathbf{0}$.
3. Let $A=\left[\begin{array}{ccccc}3 & 1 & -1 & -2 & 2 \\ 1 & 1 & 1 & 1 & 8 \\ 7 & -1 & -9 & -4 & 4 \\ 5 & 3 & 1 & -5 & -2\end{array}\right]$. The RREF of A is $\left[\begin{array}{ccccc}1 & 0 & -1 & 0 & 3 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. Let $\mathbf{b}=\left[\begin{array}{c}1 \\ -4 \\ -3 \\ 8\end{array}\right]$.
(a) Find all solutions to the homogeneous linear system $A \mathbf{x}=\mathbf{0}$.
(b) Prove that $\left[\begin{array}{c}1 \\ 2 \\ 0 \\ 1 \\ -1\end{array}\right]$ is a solution to the linear system $A \mathbf{x}=\mathbf{b}$.
(c) Find all solutions to $A \mathbf{x}=\mathbf{b}$.

Hint: Use the result from problem 2c.

