Homework 2

Book Problems: Section 2.2 # 1, 5, 15 Section 1.2 # 10, 11 Section 1.3 # 13, 23, 28 Section 1.4 # 3, 29

Additional Problems: Note: Write your solutions to linear systems as vectors.

- 1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction.
 - (a) 2x + y = 8 3x + 4y = 7 x + y = 3(b) x + y + z = 32x + 2y - z = 3
 - (c) 2x + y + z = 14x 3y + z = 73x y + z = 2
- 2. Let A be an $m \times n$ matrix and **b** be an *m*-vector such that $A\mathbf{x} = \mathbf{b}$ is a consistent linear system. Let \mathbf{x}_p be a solution to $A\mathbf{x} = \mathbf{b}$ and let **0** be the zero *m*-vector.
 - (a) Prove that if \mathbf{x}_h is a solution to $A\mathbf{x} = \mathbf{0}$, then $\mathbf{x}_p + \mathbf{x}_h$ is a solution to $A\mathbf{x} = \mathbf{b}$.
 - (b) Prove that if \mathbf{x}_1 is a solution to $A\mathbf{x} = \mathbf{b}$, then $\mathbf{x}_1 \mathbf{x}_p$ is a solution to $A\mathbf{x} = \mathbf{0}$.
 - (c) Use the previous two parts to explain why the following statement is true: The solutions to $A\mathbf{x} = \mathbf{b}$ are exactly the vectors of the form $\mathbf{x}_p + \mathbf{x}_h$ where \mathbf{x}_h is a solution to the homogeneous linear system $A\mathbf{x} = \mathbf{0}$.

3. Let
$$A = \begin{bmatrix} 3 & 1 & -1 & -2 & 2 \\ 1 & 1 & 1 & 1 & 8 \\ 7 & -1 & -9 & -4 & 4 \\ 5 & 3 & 1 & -5 & -2 \end{bmatrix}$$
. The RREF of A is $\begin{bmatrix} 1 & 0 & -1 & 0 & 3 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$. Let $\mathbf{b} = \begin{bmatrix} 1 \\ -4 \\ -3 \\ 8 \end{bmatrix}$.

(a) Find all solutions to the homogeneous linear system $A\mathbf{x} = \mathbf{0}$.

(b) Prove that $\begin{bmatrix} 1\\2\\0\\1\\-1 \end{bmatrix}$ is a solution to the linear system $A\mathbf{x} = \mathbf{b}$.

(c) Find all solutions to $A\mathbf{x} = \mathbf{b}$. Hint: Use the result from problem 2c.