Homework 13 Solutions to Additional Problems:

1. Let $L: P_{1} \rightarrow P_{1}$ be the linear transformation $L(a t+b)=(a+4 b) t+(a+b)$. Is $L$ diagonalizable? If yes, find a basis $S$ for $P_{1}$ such that the representation of $L$ with respect to $S$ is a diagonal matrix.

We can check if $L$ is diagonalizable by checking if a representation of $L$ is diagonalizable. Let $T=\{t, 1\}$ be the standard basis for $P_{1}$. The representation of $L$ with respect to $T$ is $A=\left[\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right]$. To check if this matrix is diagonalizable, first find the eigenvalues. The eigenvalues are the roots of $\operatorname{det}(\lambda I-A)=$ $\operatorname{det}\left(\left[\begin{array}{cc}\lambda-1 & -4 \\ -1 & \lambda-1\end{array}\right]\right)=(\lambda-1)(\lambda-1)-4=\lambda^{2}-2 \lambda-3=(\lambda-3)(\lambda+1)$. The eigenvalues are -1 and 3 , each with multiplicity 1 . As the eigenvalues are distinct (all multiplicity 1 ), $A$ is diagonalizable and so is $L$.

The basis $S$ will be a basis consisting of eigenvectors of $L$. We start by finding the eigenvectors of $A$, then use these to find the eigenvectors of $L$. The eigenvectors associated with $\lambda=-1$ are the nonzero vectors in the null space of $-I-A=\left[\begin{array}{ll}-2 & -4 \\ -1 & -2\end{array}\right]$. This matrix has RREF $\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$ so the eigenvectors are the nonzero multiples of $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. These are the $T$ coordinates of the eigenvectors of $L$ associated with -1 , so the eigenvectors of $L$ associated with -1 are the nonzero multiples of $-2 t+1$. The eigenvectors associated with $\lambda=3$ are the nonzero vectors in the null space of $3 I-A=\left[\begin{array}{cc}2 & -4 \\ -1 & 2\end{array}\right]$. This matrix has RREF $\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$ so the eigenvectors are the nonzero multiples of $\left[\begin{array}{l}2 \\ 1\end{array}\right]$. These are the $T$ coordinates of the eigenvectors of $L$ associated with 3 , so the eigenvectors of $L$ associated with 3 are the nonzero multiples of $2 t+1$. The set $S=\{-2 t+1,2 t+1\}$ is a basis for $P_{1}$ and as these are both eigenvectors, the representation of $L$ with respect to $S$ will be diagonal. In particular, the representation is $\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]$.
2. For each matrix $A$, the characteristic polynomial of $A$ is provided. Determine if $A$ is diagonalizable.
(a) $A=\left[\begin{array}{lll}4 & 4 & -2 \\ 1 & 4 & -1 \\ 3 & 6 & -1\end{array}\right],(\lambda-3)(\lambda-2)^{2}$

To check if $A$ is diagonalizable, we check if the dimension of each eigenspace matches the multiplicity of the corresponding eigenvalue. This is automatically true for eigenvalues of multiplicity 1 so we only need to check the eigenvalues with multiplicity larger than 1 . In this case, the eigenvalues are 3 with multiplicity 1 and 2 with multiplicity 2 . We therefore need to check if the dimension of the eigenspace associated with $\lambda=2$ is 2 . The eigenspace associated with $\lambda=2$ is the null space of $2 \lambda-A=\left[\begin{array}{lll}-2 & -4 & 2 \\ -1 & -2 & 1 \\ -3 & -6 & 3\end{array}\right]$. This has RREF $\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. There are 2 columns without leading 1's, so the dimension of the eigenspace is 2 which matches the multiplicity so $A$ is diagonalizable.
(b) $A=\left[\begin{array}{cccc}3 & 0 & -2 & -1 \\ -1 & 2 & 5 & 4 \\ 6 & 0 & -5 & -3 \\ -6 & 0 & 4 & 2\end{array}\right], \lambda(\lambda-1)(\lambda+1)(\lambda-2)$

The eigenvalues of $A$ are $0,1,-1,2$ each with multiplicity 1 . As the eigenvalues are distinct (each multiplicity 1), $A$ is diagonalizable.
(c) $A=\left[\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 5 & -2 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 2 & 0 & 1 & 1\end{array}\right],(\lambda+1)(\lambda-1)^{2}(\lambda+2)$

Check if the eigenspace associated with $\lambda=1$ has dimension 2 . The eigenspace associated with $\lambda=1$ is the null space of $I-A=\left[\begin{array}{cccc}2 & 0 & 0 & 0 \\ -5 & 3 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ -2 & 0 & -1 & 0\end{array}\right]$. This has RREF $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. There is only one column without a leading one so the eigenspace has dimension 1 . This is less than the multiplicity so $A$ is not diagonalizable.
3. Let $A$ be a $3 \times 3$ matrix. Suppose that the eigenvalues of $A$ are $\lambda_{1}=1, \lambda_{2}=2$, and $\lambda_{3}=3$ with associated eigenvectors $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$, and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}-2 \\ 3 \\ -3\end{array}\right]$
respectively.

Find a formula for $A^{k}$ and use this to find $A$ and $A^{100}$ (you do not need to simplify the entries of $A^{100}$ ).

The matrix $A$ is diagonalizable, as it is $3 \times 3$ with 3 distinct eigenvalues. Start by finding a diagonal matrix $D$ and an invertible matrix $P$ such that $D=P^{-1} A P$. The diagonal matrix will have the eigenvalues on the diagonal so $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$. The invertible matrix $P$ will have the eigenvectors as columns so $P=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & -2 & 3 \\ 1 & 3 & -3\end{array}\right]$. Note that the order in which you put the eigenvalues along the diagonal of $D$ does not matter, but you must choose the same ordering for the columns of $P$. Solving the equation $D=P^{-1} A P$ for $A$ we get that $A=P D P^{-1}$. Then $A^{k}=P D^{k} P^{-1}$.

If we start with $[P: I]$ and do row operations to get to $\left[I: P^{-1}\right]$, we find that $P^{-1}=$ $\left[\begin{array}{ccc}3 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$. The powers of $D$ are $D^{k}=\left[\begin{array}{ccc}1^{k} & 0 & 0 \\ 0 & 2^{k} & 0 \\ 0 & 0 & 3^{k}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2^{k} & 0 \\ 0 & 0 & 3^{k}\end{array}\right]$. Multiplying everything out we get $A^{k}=P D^{k} P^{-1}=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & -2 & 3 \\ 1 & 3 & -3\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2^{k} & 0 \\ 0 & 0 & 3^{k}\end{array}\right]\left[\begin{array}{ccc}3 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]=$
$\left[\begin{array}{ccc}3-2\left(3^{k}\right) & 2\left(2^{k}\right)-2\left(3^{k}\right) & -2+2\left(2^{k}\right) \\ -3+3\left(3^{k}\right) & -2\left(2^{k}\right)+3\left(3^{k}\right) & 2-2\left(2^{k}\right) \\ 3-3\left(3^{k}\right) & 3\left(2^{k}\right)-3\left(3^{k}\right) & -2+3\left(2^{k}\right)\end{array}\right]$.
Plugging in $k=1$, we get that $A=\left[\begin{array}{ccc}-3 & -2 & 2 \\ 6 & 5 & -2 \\ -6 & -3 & 4\end{array}\right]$. Plugging in $k=100$, $A^{100}=\left[\begin{array}{ccc}3-2\left(3^{100}\right) & 2\left(2^{100}\right)-2\left(3^{100}\right) & -2+2\left(2^{100}\right) \\ -3+3\left(3^{100}\right) & -2\left(2^{100}\right)+3\left(3^{100}\right) & 2-2\left(2^{100}\right) \\ 3-3\left(3^{100}\right) & 3\left(2^{100}\right)-3\left(3^{100}\right) & -2+3\left(2^{100}\right)\end{array}\right]$.

