Book Problems:
Section 7.2 \# 1, 11abc, 13, 19, 23
Additional Problems:

1. Let $L: P_{1} \rightarrow P_{1}$ be the linear transformation $L(a t+b)=(a+4 b) t+(a+b)$. Is L diagonalizable? If yes, find a basis S for P_{1} such that the representation of L with respect to S is a diagonal matrix.
2. For each matrix A, the characteristic polynomial of A is provided. Determine if A is diagonalizable.
(a) $A=\left[\begin{array}{lll}4 & 4 & -2 \\ 1 & 4 & -1 \\ 3 & 6 & -1\end{array}\right],(\lambda-3)(\lambda-2)^{2}$
(b) $A=\left[\begin{array}{cccc}3 & 0 & -2 & -1 \\ -1 & 2 & 5 & 4 \\ 6 & 0 & -5 & -3 \\ -6 & 0 & 4 & 2\end{array}\right], \lambda(\lambda-1)(\lambda+1)(\lambda-2)$
(c) $A=\left[\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 5 & -2 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 2 & 0 & 1 & 1\end{array}\right],(\lambda+1)(\lambda-1)^{2}(\lambda+2)$
3. Let A be a 3×3 matrix. Suppose that the eigenvalues of A are $\lambda_{1}=1, \lambda_{2}=2$, and $\lambda_{3}=3$ with associated eigenvectors $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$, and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}-2 \\ 3 \\ -3\end{array}\right]$ respectively.

Find a formula for A^{k} and use this to find A and A^{100} (you do not need to simplify the entries of A^{100}).

