Homework 12 Solutions to Additional Problems:

1. Let $L: P_{1} \rightarrow P_{1}$ be the linear transformation $L(a t+b)=(2 a+7 b) t+(2 a-3 b)$. Find all eigenvalues of L. For each eigenvalue, find all associated eigenvectors.

There are few ways to do this problem. It can be done without representations, or using a representation with respect to any basis for P_{1}. Here we explain how to do this using the representation of L with respect to the standard basis for P_{1}.

Let $S=\{t, 1\}$ and let A be the representation of L with respect to $S . L(t)=$ $2 t+2, L(1)=7 t-3$ and the coordinates of these vectors with respect to S are $\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}7 \\ -3\end{array}\right]$ respectively. Therefore $A=\left[\begin{array}{cc}2 & 7 \\ 2 & -3\end{array}\right]$. The eigenvalues of L will be the same as the eigenvalues of A. The eigenvalues of A are the roots of $\operatorname{det}(\lambda I-A)=$ $\operatorname{det}\left(\left[\begin{array}{cc}\lambda-2 & -7 \\ -2 & \lambda+3\end{array}\right]\right)=(\lambda-2)(\lambda+3)-14=\lambda^{2}+\lambda-20=(\lambda+5)(\lambda-4)$. This is 0 when $\lambda=-5,4$ so the eigenvalues of A and of L are -5 and 4 .

For $\lambda=-5$, the eigenvectors of A are the nonzero vectors in the null space of $-5 I-A=\left[\begin{array}{ll}-7 & -7 \\ -2 & -2\end{array}\right]$. This matrix has RREF $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$. If we think of this as the coefficient matrix of a homogeneous linear system in x, y then y can be anything and $x=-y$. The null space is all vectors of the form $\left[\begin{array}{c}-y \\ y\end{array}\right]$. A polynomial in P_{1} is an eigenvector of L associated with -5 if and only if its coordinate with respect to S is an eigenvector of A associated with -5 . Therefore the eigenvectors of L associated with -5 are all nonzero polynomials of the form $-y t+y=y(-t+1)$, or all nonzero scalar multiples of $-t+1$.

For $\lambda=4$, the eigenvectors of A are the nonzero vectors in the null space of $4 I-A=\left[\begin{array}{cc}2 & -7 \\ -2 & 7\end{array}\right]$. This matrix has RREF $\left[\begin{array}{cc}1 & -7 / 2 \\ 0 & 0\end{array}\right]$. If we think of this as the coefficient matrix of a homogeneous linear system in x, y then y can be anything and $x=(7 / 2) y$. The null space is all vectors of the form $\left[\begin{array}{c}(7 / 2) y \\ y\end{array}\right]$. The eigenvectors of L associated with 4 are all nonzero polynomials of the form $(7 / 2) y t+y=(y / 2)(7 t+2)$, or all nonzero scalar multiples of $7 t+2$.
2. For each matrix A, find the eigenvalues of A. Find a basis for the eigenspace associated with each eigenvalue.
(a) $A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ -4 & -5 & -8 \\ 4 & 4 & 7\end{array}\right]$

The characteristic polynomial of A is $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\left[\begin{array}{ccc}\lambda+1 & 0 & 0 \\ 4 & \lambda+5 & 8 \\ -4 & -4 & \lambda-7\end{array}\right]\right)=$
$(\lambda+1)((\lambda+5)(\lambda-7)+32)=(\lambda+1)\left(\lambda^{2}-2 \lambda-3\right)=(\lambda+1)(\lambda+1)(\lambda-3)$.
This is 0 when $\lambda=-1,3$ so the eigenvalues are -1 and 3 .

The eigenspace associated with $\lambda=-1$ is the null space of $-I-A=$ $\left[\begin{array}{ccc}0 & 0 & 0 \\ 4 & 4 & 8 \\ -4 & -4 & -8\end{array}\right]$. The RREF of this matrix is $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. If the we think of this as the coefficient matrix of a homogeneous linear system in the variables x, y, z then y, z can be anything as there are no leading ones in columns 2 and 3 and $x=-y-2 z$. The vectors in the eigenspace have the form $\left[\begin{array}{c}-y-2 z \\ y \\ z\end{array}\right]=y\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]+z\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]$. This has basis $\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]\right\}$.
The eigenspace associated with $\lambda=3$ is the null space of $3 I-A=\left[\begin{array}{ccc}4 & 0 & 0 \\ 4 & 8 & 8 \\ -4 & -4 & -4\end{array}\right]$.
The RREF of this matrix is $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$. The solutions to this are that z can be anything, $y=-z$, and $x=0$. The vectors in the eigenspace have the form $\left[\begin{array}{c}0 \\ -z \\ z\end{array}\right]=z\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$. This has basis $\left\{\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right\}$.
(b) $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 1\end{array}\right]$

The characteristic polynomial of A is $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\left[\begin{array}{cccc}\lambda-1 & -2 & -3 & -4 \\ 0 & \lambda & -5 & -6 \\ 0 & 0 & \lambda-1 & -7 \\ 0 & 0 & 0 & \lambda-1\end{array}\right]\right)=$ $\lambda(\lambda-1)^{3}$. This is 0 when $\lambda=1,0$ so the eigenvalues are 1 and 0 .

The eigenspace associated with $\lambda=1$ is the null space of $I-A=\left[\begin{array}{cccc}0 & -2 & -3 & -4 \\ 0 & 1 & -5 & -6 \\ 0 & 0 & 0 & -7 \\ 0 & 0 & 0 & 0\end{array}\right]$.
The RREF of this matrix is $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$. Using variables x, y, z, w we see that $y=z=w=0$ and x is anything. The vectors in the eigenspace have the form $\left[\begin{array}{l}x \\ 0 \\ 0 \\ 0\end{array}\right]=x\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$. This has basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\right\}$.
The eigenspace associated with $\lambda=0$ is the null space of $-A=\left[\begin{array}{cccc}-1 & -2 & -3 & -4 \\ 0 & 0 & -5 & -6 \\ 0 & 0 & -1 & -7 \\ 0 & 0 & 0 & -1\end{array}\right]$.
The RREF of this matrix is $\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$. The solutions to this are that
$z=w=0, y$ can be anything, and $x=-2 y$. The vectors in the eigenspace have the form $\left[\begin{array}{c}-2 y \\ y \\ 0 \\ 0\end{array}\right]=y\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]$. This has basis $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]\right\}$.
3. Let A be an $n \times n$ matrix. Prove that A and A^{T} have the same eigenvalues. Do they have the same eigenvectors?

The eigenvalues of A are the roots of the characteristic polynomial $\operatorname{det}(\lambda I-A)$. The eigenvalues of A^{T} are the roots of $\operatorname{det}\left(\lambda I-A^{T}\right)$. Note that $(\lambda I-A)^{T}=(\lambda I)^{T}-A^{T}=$ $\lambda I-A^{T}$ since λI is symmetric. Also, the determinant of a matrix is the same as the determinant of the transpose, so $\operatorname{det}(\lambda I-A)=\operatorname{det}\left((\lambda I-A)^{T}\right)=\operatorname{det}\left(\lambda I-A^{T}\right)$. We have proved that A and A^{T} have the same characteristic polynomial so they have the same eigenvalues.

The eigenvectors are not the same. For example, the matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ has eigenvector $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ because $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. The transpose, $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ does not have eigenvector
$\left[\begin{array}{l}1 \\ 0\end{array}\right]$ because $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ which is not a multiple of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
4. Let λ be an eigenvalue of an $n \times n$ matrix A with associated eigenvector \mathbf{v}. Prove one of the following statements (you do not need to prove all 3).
(a) \mathbf{v} is also an eigenvector of A^{2} with associated eigenvalue λ^{2}.
A has eigenvalue λ with associated eigenvector \mathbf{v} so $A \mathbf{v}=\lambda \mathbf{v}$. Then $A^{2} \mathbf{v}=$ $A(A \mathbf{v})=A(\lambda \mathbf{v})=\lambda(A \mathbf{v})=\lambda(\lambda \mathbf{v}))=\lambda^{2} \mathbf{v}$. We have shown that $A^{2} \mathbf{v}=\lambda^{2} \mathbf{v}$ so \mathbf{v} is an eigenvector of A^{2} with associated eigenvalue λ^{2}.
(b) \mathbf{v} is also an eigenvector of A^{-1} with associated eigenvalue $1 / \lambda$ (assuming A is invertible).

Assume A is invertible. In one of the book problems, you showed that if A is invertible then 0 is not an eigenvalue of A so $\lambda \neq 0$. A has eigenvalue λ with associated eigenvector \mathbf{v} so $A \mathbf{v}=\lambda \mathbf{v}$. If we multiply both sides of this equation by A^{-1} on the left, we get $A^{-1} A \mathbf{v}=A^{-1}(\lambda \mathbf{v})$. This simplifies to $\mathbf{v}=\lambda A^{-1} \mathbf{v}$. As $\lambda \neq 0$, we divide both sides by λ to get $A^{-1} \mathbf{v}=(1 / \lambda) \mathbf{v}$ so \mathbf{v} is an eigenvector of A^{-1} with associated eigenvalue $1 / \lambda$.
(c) \mathbf{v} is also an eigenvector of $A+r I$ with associated eigenvalue $\lambda+r$.
A has eigenvalue λ with associated eigenvector \mathbf{v} so $A \mathbf{v}=\lambda \mathbf{v}$. Then $(A+$ $r I) \mathbf{v}=A \mathbf{v}+r I \mathbf{v}=\lambda \mathbf{v}+r \mathbf{v}=(\lambda+r) \mathbf{v}$. We have shown that $(A+r I) \mathbf{v}=$ $(\lambda+r) \mathbf{v}$ so \mathbf{v} is an eigenvector of $A+r I$ with associated eigenvalue $\lambda+r$.

