Due: Tues, April 28

Homework 12

Book Problems: Section 7.1 # 3, 7ab, 17, 24ab, 26

Additional Problems:

- 1. Let $L: P_1 \to P_1$ be the linear transformation L(at + b) = (2a + 7b)t + (2a 3b). Find all eigenvalues of L. For each eigenvalue, find all associated eigenvectors.
- 2. For each matrix A, find the eigenvalues of A. Find a basis for the eigenspace associated with each eigenvalue.

(a)
$$A = \begin{bmatrix} -1 & 0 & 0 \\ -4 & -5 & -8 \\ 4 & 4 & 7 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

- 3. Let A be an $n \times n$ matrix. Prove that A and A^T have the same eigenvalues. Do they have the same eigenvectors?
- 4. Let λ be an eigenvalue of an $n \times n$ matrix A with associated eigenvector **v**. Prove one of the following statements (you do not need to prove all 3).
 - (a) **v** is also an eigenvector of A^2 with associated eigenvalue λ^2 .
 - (b) **v** is also an eigenvector of A^{-1} with associated eigenvalue $1/\lambda$ (assuming A is invertible).
 - (c) **v** is also an eigenvector of A + rI with associated eigenvalue $\lambda + r$.