Book Problems:
Section 7.1 \# 3, 7ab, 17, 24ab, 26
Additional Problems:

1. Let $L: P_{1} \rightarrow P_{1}$ be the linear transformation $L(a t+b)=(2 a+7 b) t+(2 a-3 b)$. Find all eigenvalues of L. For each eigenvalue, find all associated eigenvectors.
2. For each matrix A, find the eigenvalues of A. Find a basis for the eigenspace associated with each eigenvalue.
(a) $A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ -4 & -5 & -8 \\ 4 & 4 & 7\end{array}\right]$
(b) $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 1\end{array}\right]$
3. Let A be an $n \times n$ matrix. Prove that A and A^{T} have the same eigenvalues. Do they have the same eigenvectors?
4. Let λ be an eigenvalue of an $n \times n$ matrix A with associated eigenvector \mathbf{v}. Prove one of the following statements (you do not need to prove all 3).
(a) \mathbf{v} is also an eigenvector of A^{2} with associated eigenvalue λ^{2}.
(b) \mathbf{v} is also an eigenvector of A^{-1} with associated eigenvalue $1 / \lambda$ (assuming A is invertible).
(c) \mathbf{v} is also an eigenvector of $A+r I$ with associated eigenvalue $\lambda+r$.
