Homework 11 Solutions to Additional Problems:

1. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear operator $L\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}x-y \\ y-x\end{array}\right]$.

Let $S=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ and $T=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}-1 \\ -2\end{array}\right]\right\}$.
Let A be the standard matrix representing L and let B be the representation of L with respect to T. Let P be the transition matrix from T to S and let Q be the transition matrix from S to T.
(a) Find A.

This is the matrix whose columns are $L\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $L\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, so $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$. Note that the standard matrix representing L is the same as the representation of L with respect to S.
(b) Find P and Q.

To find P, take the vectors in T and find their coordinates with respect to S. As S is the standard basis, taking coordinates will not change the vector so $P=\left[\begin{array}{ll}1 & -1 \\ 1 & -2\end{array}\right]$.

To find Q, either take the vectors in S and find their T coordinates or use that $Q=P^{-1}$. Using the inverse formula for 2×2 matrices, we get that $Q=P^{-1}=\left[\begin{array}{ll}2 & -1 \\ 1 & -1\end{array}\right]$.
(c) Using the methods of Section 6.5, find a formula for B in terms of A, P, Q and use this to compute B.

As A is the representation of L with respect to S, we will have that $B=$ $Q A P=\left[\begin{array}{ll}2 & -1 \\ 1 & -1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{ll}1 & -1 \\ 1 & -2\end{array}\right]=\left[\begin{array}{ll}0 & 3 \\ 0 & 2\end{array}\right]$.

(d) Compute B using the methods of Section 6.3.

To find B this way, plug the vectors from T into L and then take coordinates with respect to $T . L\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $L\left(\left[\begin{array}{l}-1 \\ -2\end{array}\right]\right)=\left[\begin{array}{c}1 \\ -1\end{array}\right]$. The coordinate vector of $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ with respect to T is $\left[\begin{array}{l}0 \\ 0\end{array}\right]$. To find the coordinate vector of $\left[\begin{array}{c}1 \\ -1\end{array}\right]$
with respect to T, we solve the system $\left[\begin{array}{c}1 \\ -1\end{array}\right]=x\left[\begin{array}{l}1 \\ 1\end{array}\right]+y\left[\begin{array}{l}-1 \\ -2\end{array}\right]$. The solution is $x=3, y=2$ so the coordinate vector is $\left[\begin{array}{l}3 \\ 2\end{array}\right]$. The two coordinate vectors we found are the columns of B so $B=\left[\begin{array}{ll}0 & 3 \\ 0 & 2\end{array}\right]$. This matches what we found in the previous part.
2. Let $L: P_{2} \rightarrow \mathbb{R}_{2}$ be the linear transformation $L\left(a t^{2}+b t+c\right)=\left[\begin{array}{ll}a-b & b+2 c\end{array}\right]$. Let $S, S^{\prime}, T, T^{\prime}$ be the following bases for P_{2} and \mathbb{R}_{2}.

$$
\begin{gathered}
S=\left\{t^{2}, t, 1\right\}, S^{\prime}=\left\{t^{2}+2 t-1,3 t+5,2 t^{2}+t-4\right\} \\
T=\left\{\left[\begin{array}{ll}
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1
\end{array}\right]\right\}, T^{\prime}=\left\{\left[\begin{array}{ll}
1 & -1
\end{array}\right],\left[\begin{array}{ll}
2 & 0
\end{array}\right]\right\}
\end{gathered}
$$

Let A be the matrix representing L with respect to S and T and let B be the matrix representing L with respect to S^{\prime} and T^{\prime}.
(a) Find A.

Plug the vectors from S into L then take T coordinates. $L\left(t^{2}\right)=\left[\begin{array}{cc}1 & 0\end{array}\right], L(t)=$ $\left[\begin{array}{ll}-1 & 1\end{array}\right], L(1)=\left[\begin{array}{ll}0 & 2\end{array}\right]$. The coordinates with respect to T are $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2\end{array}\right]$ respectively, so $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 2\end{array}\right]$.
(b) Let C be the transition matrix from S to S^{\prime} and let D be the transition matrix from T to T^{\prime}. Fill in the blanks with C, C^{-1}, D, or D^{-1} :

$$
B=D A C^{-1}
$$

(c) Compute the transition matrices you used in the previous part and use that formula to compute B.

We need to compute D and C^{-1}. D is the transition matrix from T to T^{\prime}. The transition matrix from T^{\prime} to T is easier to compute, so we instead compute this and then take its inverse to get D. To find the transition matrix from T^{\prime} to T, we take each vector in T^{\prime} and find its coordinate vector with respect to T. The coordinate vectors are $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 0\end{array}\right]$ so $D^{-1}=\left[\begin{array}{cc}1 & 2 \\ -1 & 0\end{array}\right]$. Using the 2×2 inverse formula, we get that $D=\left[\begin{array}{cc}0 & -1 \\ 1 / 2 & 1 / 2\end{array}\right]$.
C^{-1} is the transition matrix from S^{\prime} to S so we take the vectors in S^{\prime} and find their coordinates with respect to S. The coordinate vectors are $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -4\end{array}\right]$ so $C^{-1}=\left[\begin{array}{ccc}1 & 0 & 2 \\ 2 & 3 & 1 \\ -1 & 5 & -4\end{array}\right]$.
Then $B=D A C^{-1}=\left[\begin{array}{cc}0 & -1 \\ 1 / 2 & 1 / 2\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 2\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 2 \\ 2 & 3 & 1 \\ -1 & 5 & -4\end{array}\right]=\left[\begin{array}{ccc}0 & -13 & 7 \\ -1 / 2 & 5 & -3\end{array}\right]$.
(d) Compute B using the methods of Section 6.3.

Take the vectors in S^{\prime} and plug them into L then find the T^{\prime} coordinates. $L\left(t^{2}+2 t-1\right)=\left[\begin{array}{ll}-1 & 0\end{array}\right], L(3 t+5)=\left[\begin{array}{ll}-3 & 13\end{array}\right], L\left(2 t^{2}+t-4\right)=\left[\begin{array}{ll}1 & -7\end{array}\right]$. To find the coordinates of $\left[\begin{array}{cc}-1 & 0\end{array}\right]$ with respect to T^{\prime}, we solve the system $\left[\begin{array}{ll}-1 & 0\end{array}\right]=x\left[\begin{array}{ll}1 & -1\end{array}\right]+y\left[\begin{array}{ll}2 & 0\end{array}\right]$. The solution is $x=0, y=-1 / 2$ so the coordinate vector is $\left[\begin{array}{c}0 \\ -1 / 2\end{array}\right]$. To find the coordinates of $\left[\begin{array}{ll}-3 & 13\end{array}\right]$, we solve the system $\left[\begin{array}{ll}-3 & 13\end{array}\right]=x\left[\begin{array}{ll}1 & -1\end{array}\right]+y\left[\begin{array}{ll}2 & 0\end{array}\right]$. The solution is $x=-13, y=5$ so the coordinate vector is $\left[\begin{array}{c}-13 \\ 5\end{array}\right]$. To find the coordinates of $\left[\begin{array}{ll}1 & -7\end{array}\right]$, we solve the system $\left[\begin{array}{ll}1 & -7\end{array}\right]=x\left[\begin{array}{ll}1 & -1\end{array}\right]+y\left[\begin{array}{ll}2 & 0\end{array}\right]$. The solution is $x=7, y=-3$ so the coordinate vector is $\left[\begin{array}{c}7 \\ -3\end{array}\right]$. These coordinates are the columns of B so $B=\left[\begin{array}{ccc}0 & -13 & 7 \\ -1 / 2 & 5 & -3\end{array}\right]$.
3. Suppose A and B are similar matrices. Prove that $A+r I$ and $B+r I$ are similar matrices for any real number r.
A and B are similar so $B=P^{-1} A P$ for some invertible matrix P. Then

$$
P^{-1}(A+r I) P=P^{-1} A P+P^{-1}(r I) P=B+r\left(P^{-1} I P\right)=B+r I
$$

so the matrices $A+r I$ and $B+r I$ are similar.

