Book Problems:
Section 6.5 \# 3, 6, 9, 14, 17
Additional Problems:

1. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear operator $L\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}x-y \\ y-x\end{array}\right]$. Let $S=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ and $T=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}-1 \\ -2\end{array}\right]\right\}$.
Let A be the standard matrix representing L and let B be the representation of L with respect to T. Let P be the transition matrix from T to S and let Q be the transition matrix from S to T.
(a) Find A.
(b) Find P and Q.
(c) Using the methods of Section 6.5, find a formula for B in terms of A, P, Q and use this to compute B.
(d) Compute B using the methods of Section 6.3.
2. Let $L: P_{2} \rightarrow \mathbb{R}_{2}$ be the linear transformation $L\left(a t^{2}+b t+c\right)=\left[\begin{array}{ll}a-b & b+2 c\end{array}\right]$.

Let $S, S^{\prime}, T, T^{\prime}$ be the following bases for P_{2} and \mathbb{R}_{2}.

$$
\begin{gathered}
S=\left\{t^{2}, t, 1\right\}, S^{\prime}=\left\{t^{2}+2 t-1,3 t+5,2 t^{2}+t-4\right\} \\
T=\left\{\left[\begin{array}{ll}
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1
\end{array}\right]\right\}, T^{\prime}=\left\{\left[\begin{array}{ll}
1 & -1
\end{array}\right],\left[\begin{array}{ll}
2 & 0
\end{array}\right]\right\}
\end{gathered}
$$

Let A be the matrix representing L with respect to S and T and let B be the matrix representing L with respect to S^{\prime} and T^{\prime}.
(a) Find A.
(b) Let C be the transition matrix from S to S^{\prime} and let D be the transition matrix from T to T^{\prime}. Fill in the blanks with C, C^{-1}, D, or D^{-1} :

$$
B=_A
$$

(c) Compute the transition matrices you used in the previous part and use that formula to compute B.
(d) Compute B using the methods of Section 6.3.
3. Suppose A and B are similar matrices. Prove that $A+r I$ and $B+r I$ are similar matrices for any real number r.

