Homework 10 Solutions to Additional Problems:

1. Let $L: \mathbb{R}^{2} \rightarrow P_{1}$ be the linear transformation $L\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=(2 a+5 b) t+(a+3 b)$. Show that L is invertible and find L^{-1}.

We will give two possible methods for solving this problem.

Method 1: Without representations

To show L is invertible, show that it is one-to-one and onto. The kernel of L is all 2 -vectors $\left[\begin{array}{l}a \\ b\end{array}\right]$ with $2 a+5 b=0$ and $a+3 b=0$. The only solution here is $a=b=0$ so ker $L=\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$ and therefore L is one-to-one. The range of L is all polynomials of the form $(2 a+5 b) t+(a+3 b)=a(2 t+1)+b(5 t+3)$ so range $L=\operatorname{span}\{2 t+1,5 t+3\}$. These two vectors are linearly independent so the range has dimension 2 and is therefore all of P_{1}. This shows L is onto.

To find $L^{-1}: P_{2} \rightarrow \mathbb{R}^{2}$, we can look at what L does to the standard basis for \mathbb{R}^{2}. We use that $L\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=2 t+1$ and $L\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=5 t+3$ to get $L^{-1}(2 t+1)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $L^{-1}(5 t+3)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Solving the equation $a t+b=x(2 t+1)+y(5 t+3)$ for x and y in terms of a and b, we get $x=3 a-5 b, y=-a+2 b$. Thus $a t+b=(3 a-5 b)(2 t+1)+(-a+2 b)(5 t+3)$. Then $L^{-1}(a t+b)=L^{-1}((3 a-$ $5 b)(2 t+1)+(-a+2 b)(5 t+3))=(3 a-5 b) L^{-1}(2 t+1)+(-a+2 b) L^{-1}(5 t+3)=$ $(3 a-5 b)\left[\begin{array}{l}1 \\ 0\end{array}\right]+(-a+2 b)\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}3 a-5 b \\ -a+2 b\end{array}\right]$.

Method 2: Using representations
Let $S=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ and $T=\{t, 1\}$. Let A be the representation of L with respect to S and T. Then $L\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=2 t+1$ and $L\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=5 t+3$. The coordinate vectors of these vectors with respect to T are $[2 t+1]_{T}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $[5 t+3]_{T}=\left[\begin{array}{l}5 \\ 3\end{array}\right]$. Therefore $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$. As $\operatorname{det}(A)=1, A$ is an invertible matrix so L is an invertible linear
transformation.

The inverse $L^{-1}: P_{1} \rightarrow \mathbb{R}^{2}$ has representation A^{-1} with respect to T and S. Using the 2×2 formula for inverses, $A^{-1}=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]$. For any $a t+b$ in P_{1}, we get that $\left[L^{-1}(a t+b)\right]_{S}=A^{-1}[a t+b]_{T} . T$ is the standard basis for P_{1} so $[a t+b]_{T}=\left[\begin{array}{l}a \\ b\end{array}\right]$. Plugging in the matrix A^{-1} we get that $\left[L^{-1}(a t+b)\right]_{S}=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}3 a-5 b \\ -a+2 b\end{array}\right]$. S is the standard basis for \mathbb{R}^{2} so taking the coordinate of a 2-vector with respect to S does not change the vector so $L^{-1}(a t+b)=\left[L^{-1}(a t+b)\right]_{S}=\left[\begin{array}{c}3 a-5 b \\ -a+2 b\end{array}\right]$.
2. Let $L: P_{2} \rightarrow \mathbb{R}^{4}$ be the linear transformation $L\left(a t^{2}+b t+c\right)=\left[\begin{array}{c}a+b+c \\ a-b+c \\ 2 b \\ b-a-c\end{array}\right]$.
(a) Find a basis for ker L.

The kernel of L is the set of polynomials $a t^{2}+b t+c$ such that $a+b+c=$ $0, a-b+c=0,2 b=0, b-a-c=0$. The solutions to this homogeneous linear system are that a is anything, $b=0$, and $c=-a$. Thus ker $L=\left\{a t^{2}-a\right\}=\operatorname{span}\left\{t^{2}-1\right\}$. This has basis $\left\{t^{2}-1\right\}$.
(b) Find a basis for range L.

The range of L is all 4-vectors of the form $\left[\begin{array}{c}a+b+c \\ a-b+c \\ 2 b \\ b-a-c\end{array}\right]=a\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right]+b\left[\begin{array}{c}1 \\ -1 \\ 2 \\ 1\end{array}\right]+$ $c\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right]$. Thus range $L=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right]\right\}$. This has basis $\left\{\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 2 \\ 1\end{array}\right]\right\}$.
(c) Find the representation of L with respect to S and T where S and T are the following bases for P_{2} and \mathbb{R}^{4} respectively. $S=\left\{t^{2}+2 t-1,3 t+5,2 t^{2}+t-4\right\}$,
$T=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$
Start by plugging the vectors from S into $L . L\left(t^{2}+2 t-1\right)=\left[\begin{array}{c}2 \\ -2 \\ 4 \\ 2\end{array}\right], L(3 t+5)=$ $\left[\begin{array}{c}8 \\ 2 \\ 6 \\ -2\end{array}\right], L\left(2 t^{2}+t-4\right)=\left[\begin{array}{c}-1 \\ -3 \\ 2 \\ 3\end{array}\right]$. Then take the coordinate vectors of each of these vectors with respect to T. For the first vecter, $\left[\begin{array}{c}2 \\ -2 \\ 4 \\ 2\end{array}\right]$, this means solving the linear system $\left[\begin{array}{c}2 \\ -2 \\ 4 \\ 2\end{array}\right]=x\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]+y\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right]+z\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]+w\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$. This has solution $x=-6, y=4, z=4, w=-4$ so the coordinate vector is $\left[\begin{array}{c}-6 \\ 4 \\ 4 \\ -4\end{array}\right]$. Similarly, the coordinate vectors for the other two vectors are $\left[\begin{array}{c}-4 \\ 6 \\ 6 \\ -16\end{array}\right]$ and $\left[\begin{array}{c}-5 \\ 2 \\ 2 \\ 2\end{array}\right]$ respectively. Thus the representation is $\left[\begin{array}{ccc}-6 & -4 & -5 \\ 4 & 6 & 2 \\ 4 & 6 & 2 \\ -4 & -16 & 2\end{array}\right]$.
3. Let $L: M_{n n} \rightarrow \mathbb{R}$ be the linear transformation $L(A)=a_{11}+a_{22}+\ldots+a_{n n}$ where $a_{i j}$ is the i, j-th entry of A. Find $\operatorname{dim} \operatorname{ker} L$ and dim range L (your answers may depend on n). Is L one-to-one? Onto?
$\operatorname{dim} \operatorname{ker} L=n^{2}-1$ and dim range $L=1$. In this case, it's easier to find the dimension of the range. The range is a subspace of \mathbb{R} so it is either $\{0\}$ or \mathbb{R}. As it is possible to get any real number as the result of the function L, the range of L is \mathbb{R} so it has dimension 1. Then $\operatorname{dim} \operatorname{ker} L+\operatorname{dim} \operatorname{range} L=\operatorname{dim} M_{n n}$ so $\operatorname{dim} \operatorname{ker} L=n^{2}-1$.
L is always onto, but it only one-to-one if $n=1$.
4. Let $S=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ and let $T=\left\{\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right],\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right\}$. These are bases for \mathbb{R}^{3} and M_{22} respectively. Let $L: \mathbb{R}^{3} \rightarrow M_{22}$ be a linear transformation such that the representation of L with respect to S and T is $A=\left[\begin{array}{ccc}1 & 3 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \\ 1 & 4 & -1\end{array}\right]$. Find $L\left(\left[\begin{array}{l}4 \\ 3 \\ 0\end{array}\right]\right)$.
Let $\mathbf{v}=\left[\begin{array}{l}4 \\ 3 \\ 0\end{array}\right]$. We will use that $[L(\mathbf{v})]_{T}=A[\mathbf{v}]_{S}$. To find $[\mathbf{v}]_{S}$, we need to solve the linear system $\left[\begin{array}{l}4 \\ 3 \\ 0\end{array}\right]=x\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+y\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]+z\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. This has solution $x=5, y=-1, z=1$
so $[\mathbf{v}]_{S}=\left[\begin{array}{c}5 \\ -1 \\ 1\end{array}\right]$. Then $[L(\mathbf{v})]_{T}=A[\mathbf{v}]_{S}=\left[\begin{array}{ccc}1 & 3 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \\ 1 & 4 & -1\end{array}\right]\left[\begin{array}{c}5 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{c}2 \\ -2 \\ -4 \\ 0\end{array}\right]$. Therefore
$L(\mathbf{v})=2\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right]+(-2)\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]+(-4)\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]+0\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}0 & -8 \\ 0 & 0\end{array}\right]$.

