Due: Tues, April 14

Homework 10

Book Problems: Section 6.2 #1, 5, 6, 19, 25 Section 6.3 # 1, 10, 13

Additional Problems:

1. Let $L : \mathbb{R}^2 \to P_1$ be the linear transformation $L\left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = (2a + 5b)t + (a + 3b).$ Show that L is invertible and find L^{-1} .

2. Let $L: P_2 \to \mathbb{R}^4$ be the linear transformation $L(at^2 + bt + c) = \begin{bmatrix} a+b+c\\a-b+c\\2b\\b-a-c \end{bmatrix}$.

- (a) Find a basis for ker L.
- (b) Find a basis for range L.

(c) Find the representation of L with respect to S and T where S and T are the following bases for P_2 and \mathbb{R}^4 respectively. $S = \{t^2 + 2t - 1, 3t + 5, 2t^2 + t - 4\},$ $T = \left\{ \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}$

- 3. Let $L: M_{nn} \to \mathbb{R}$ be the linear transformation $L(A) = a_{11} + a_{22} + ... + a_{nn}$ where a_{ij} is the *i*, *j*-th entry of *A*. Find dim ker *L* and dim range *L* (your answers may depend on *n*). Is *L* one-to-one? Onto?
- 4. Let $S = \left\{ \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\2\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} \right\}$ and let $T = \left\{ \begin{bmatrix} 1&0\\2&0\\0 \end{bmatrix}, \begin{bmatrix} 1&2\\0&0\\0 \end{bmatrix}, \begin{bmatrix} 0&1\\1&0\\1 \end{bmatrix}, \begin{bmatrix} 1&1\\1&1\\1&1 \end{bmatrix} \right\}$. These

are bases for \mathbb{R}^3 and M_{22} respectively. Let $L : \mathbb{R}^3 \to M_{22}$ be a linear transformation

such that the representation of *L* with respect to *S* and *T* is $A = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \\ 1 & 4 & -1 \end{bmatrix}$. Find

 $L\left(\begin{bmatrix}4\\3\\0\end{bmatrix}\right).$