Book Problems:
Section 6.2 \#1, 5, 6, 19, 25
Section 6.3 \# 1, 10, 13

Additional Problems:

1. Let $L: \mathbb{R}^{2} \rightarrow P_{1}$ be the linear transformation $L\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=(2 a+5 b) t+(a+3 b)$. Show that L is invertible and find L^{-1}.
2. Let $L: P_{2} \rightarrow \mathbb{R}^{4}$ be the linear transformation $L\left(a t^{2}+b t+c\right)=\left[\begin{array}{c}a+b+c \\ a-b+c \\ 2 b \\ b-a-c\end{array}\right]$.
(a) Find a basis for $\operatorname{ker} L$.
(b) Find a basis for range L.
(c) Find the representation of L with respect to S and T where S and T are the following bases for P_{2} and \mathbb{R}^{4} respectively. $S=\left\{t^{2}+2 t-1,3 t+5,2 t^{2}+t-4\right\}$, $T=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$
3. Let $L: M_{n n} \rightarrow \mathbb{R}$ be the linear transformation $L(A)=a_{11}+a_{22}+\ldots+a_{n n}$ where $a_{i j}$ is the i, j-th entry of A. Find $\operatorname{dim} \operatorname{ker} L$ and dim range L (your answers may depend on n). Is L one-to-one? Onto?
4. Let $S=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ and let $T=\left\{\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right],\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right\}$. These are bases for \mathbb{R}^{3} and M_{22} respectively. Let $L: \mathbb{R}^{3} \rightarrow M_{22}$ be a linear transformation such that the representation of L with respect to S and T is $A=\left[\begin{array}{ccc}1 & 3 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \\ 1 & 4 & -1\end{array}\right]$. Find $L\left(\left[\begin{array}{l}4 \\ 3 \\ 0\end{array}\right]\right)$.
