Math 3333
 Spring 2015
 Final Exam

Name:

Problem	Points
Problem 1 (14pts)	
Problem 2 (9pts)	
Problem 3 (20pts)	
Problem 4 (12pts)	
Problem 5 (8pts)	
Problem 6 (8pts)	
Problem 7 (15pts)	
Problem 8 (14pts)	
Bonus (5pts)	
Total	

1. Let A be a 3×5 matrix. Let \mathbf{b} be a nonzero 5 -vector. Assume that the nullity of A is 2 .
(a) What is the rank of A ?
(b) Are the rows of A linearly independent?
(c) Are the columns of A linearly independent?
(d) How many solutions does the linear system $A \mathbf{x}=\mathbf{0}$ have?
(e) How many solutions does the linear system $A \mathbf{x}=\mathbf{b}$ have? (list all possible numbers of solutions)
(f) Let \mathbf{v} be a solution to $A \mathbf{x}=\mathbf{0}$ and \mathbf{w} be a solution to $A \mathbf{x}=\mathbf{b}$.

Find all scalars r and s such that $r \mathbf{v}+s \mathbf{w}$ is a solution to $A \mathbf{x}=\mathbf{b}$.
2. Let B be a 4×4 matrix such that $B^{-1}=\frac{1}{2} B^{T}$.
(a) Find all possible values of $\operatorname{det}(B)$.
(b) What is the RREF of B ?
3. Let $A=\left[\begin{array}{cccc}5 & 0 & 4 & 0 \\ 0 & 1 & 0 & 0 \\ 4 & 0 & 6 & -2 \\ 0 & 0 & -2 & 5\end{array}\right]$. One of the eigenvalues of A is 1 .
(a) Find the characteristic polynomial of A and all eigenvalues of A. (8 pts)
(b) Find a basis for the eigenspace associated with the eigenvalue 1. (8 pts)
(c) Is A diagonalizable? Why or why not?
4. Let S be the set $S=\left\{\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 1\end{array}\right]\right\}$.
(a) Determine if S is orthogonal, orthonormal, or neither. Explain. (4 pts)
(b) Is S a linearly independent set? Why or why not?
(c) Find an orthonormal basis for span S.
5. Let $S=\left\{\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 3 \\ 0 & 4\end{array}\right]\right\}$.

Let c be a constant. For what value or values of c is the matrix $\left[\begin{array}{cc}c^{2} & -5 c \\ c^{2}-4 & -6\end{array}\right]$ in the span of S ?
6. Let W be the set of polynomials $p(t)$ in P_{3} with the property that $p(1)=p(-1) . W$ is a subspace of P_{3}. Find a basis for W and $\operatorname{dim} W$. (8 pts)
7. Let $L: U \rightarrow V$ be a linear transformation where $\operatorname{dim} U=3$ and $\operatorname{dim} V=4$.

Let $R=\left\{\mathbf{u}_{1}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\}$ and $S=\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ be bases for U.
Let $T=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}\right\}$ be a basis for V.
Let A be the representation of L with respect to R and T.
Let B be the representation of L with respect to S and T.
Let C be the transition matrix from R to S.
Answer the following multiple choice questions (circle the best answer).
Question 1: The kernel of L is a subspace of which space?
(a) U
(b) V
(c) \mathbb{R}^{3}
(d) \mathbb{R}^{4}

Question 2: The range of L is a subspace of which space?
(a) U
(b) V
(c) \mathbb{R}^{3}
(d) \mathbb{R}^{4}

Question 3: From the dimensions of U and V, we can tell that L is \qquad (2 pts)
(a) one-to-one
(d) not onto
(b) onto
(e) both one-to-one and onto
(c) not one-to-one
(f) neither one-to-one nor onto

Question 4: If $\operatorname{dim} \operatorname{ker} L=1$, what is dim range L ?
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4

Question 5: Which of the following is the first column of A ?
(a) $\left[\mathbf{u}_{1}\right]_{R}$
(c) $\left[L\left(\mathbf{u}_{1}\right)\right]_{R}$
(e) $\left[\mathbf{v}_{\mathbf{1}}\right]_{R}$
(g) $\left[L\left(\mathbf{v}_{\mathbf{1}}\right)\right]_{R}$
(b) $\left[\mathbf{u}_{\mathbf{1}}\right]_{T}$
(d) $\left[L\left(\mathbf{u}_{\mathbf{1}}\right)\right]_{T}$
(f) $\left[\mathbf{v}_{\mathbf{1}}\right]_{T}$
(h) $\left[L\left(\mathbf{v}_{\mathbf{1}}\right)\right]_{T}$

Question 6: Which of the following is the first column of C ?
(a) $\left[\mathbf{u}_{1}\right]_{R}$
(c) $\left[L\left(\mathbf{u}_{1}\right)\right]_{R}$
(e) $\left[\mathbf{w}_{\mathbf{1}}\right]_{R}$
(g) $\left[L\left(\mathrm{w}_{1}\right)\right]_{R}$
(b) $\left[\mathbf{u}_{\mathbf{1}}\right]_{S}$
(d) $\left[L\left(\mathbf{u}_{\mathbf{1}}\right)\right]_{S}$
(f) $\left[\mathbf{w}_{\mathbf{1}}\right]_{S}$
(h) $\left[L\left(\mathbf{w}_{\mathbf{1}}\right)\right]_{S}$

Question 7: Which of the following is equal to B ?
(a) $C A$
(c) $C^{-1} A$
(e) $C^{-1} A C$
(b) $A C$
(d) $A C^{-1}$
(f) $C A C^{-1}$
8. Let $A=\left[\begin{array}{lll}9 & -2 & -4 \\ 8 & -1 & -4 \\ 8 & -2 & -3\end{array}\right]$ and let $P=\left[\begin{array}{ccc}1 & 1 & 3 \\ 0 & 1 & -2 \\ 2 & 1 & 7\end{array}\right]$.
P is an invertible matrix with inverse $P^{-1}=\left[\begin{array}{ccc}-9 & 4 & 5 \\ 4 & -1 & -2 \\ 2 & -1 & -1\end{array}\right]$.
(a) Prove that the columns of P are eigenvectors of A and find their associated eigenvalues.
(b) Find A^{80}.

Note: Your answer should be a single matrix, but you do not need to simplify the entries.

Bonus: Find the characteristic polynomial of the following 20×20 matrix. You must show work or explain your answer to get credit.
$\left[\begin{array}{llllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

