Math 3333 Spring 2015 Final Exam

Name:___

Problem	Points
Problem 1 (14pts)	
Problem 2 (9pts)	
Problem 3 (20pts)	
Problem 4 (12pts)	
Problem 5 (8pts)	
Problem 6 (8pts)	
Problem 7 (15pts)	
Problem 8 (14pts)	
Bonus (5pts)	
Total	

1. Let A be a 3×5 matrix. Let **b** be a nonzero 5-vector. Assume that the nullity of A is 2. (14 pts)

(a)	What is the rank of A ?	
(b)	Are the rows of A linearly independent?	
(c)	Are the columns of A linearly independent?	
(d)	How many solutions does the linear system $A\mathbf{x} = 0$ have?	
(e)	How many solutions does the linear system $A\mathbf{x} = \mathbf{b}$ have? (list all possible numbers of solutions)	

(f) Let **v** be a solution to $A\mathbf{x} = \mathbf{0}$ and **w** be a solution to $A\mathbf{x} = \mathbf{b}$. Find all scalars r and s such that $r\mathbf{v} + s\mathbf{w}$ is a solution to $A\mathbf{x} = \mathbf{b}$.

- 2. Let B be a 4×4 matrix such that $B^{-1} = \frac{1}{2}B^T$.
 - (a) Find all possible values of det(B). (6 pts)

(b) What is the RREF of B?

(3 pts)

3. Let
$$A = \begin{bmatrix} 5 & 0 & 4 & 0 \\ 0 & 1 & 0 & 0 \\ 4 & 0 & 6 & -2 \\ 0 & 0 & -2 & 5 \end{bmatrix}$$
. One of the eigenvalues of A is 1.

(a) Find the characteristic polynomial of A and all eigenvalues of A. (8 pts)

(b) Find a basis for the eigenspace associated with the eigenvalue 1. (8 pts)

(c) Is A diagonalizable? Why or why not? (4 pts)

4. Let S be the set
$$S = \left\{ \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2\\1 \end{bmatrix} \right\}.$$

(a) Determine if S is orthogonal, orthonormal, or neither. Explain. (4 pts)

(b) Is S a linearly independent set? Why or why not? (4 pts)

(c) Find an orthonormal basis for span S. (4 pts)

5. Let $S = \left\{ \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix} \right\}.$

Let c be a constant. For what value or values of c is the matrix $\begin{bmatrix} c^2 & -5c \\ c^2 - 4 & -6 \end{bmatrix}$ in the span of S? (8 pts)

6. Let W be the set of polynomials p(t) in P_3 with the property that p(1) = p(-1). W is a subspace of P_3 . Find a basis for W and dim W. (8 pts)

 7. Let L: U → V be a linear transformation where dim U = 3 and dim V = 4. Let R = {u₁, u₂, u₃} and S = {w₁, w₂, w₃} be bases for U. Let T = {v₁, v₂, v₃, v₄} be a basis for V. Let A be the representation of L with respect to R and T. Let B be the representation of L with respect to S and T. Let C be the transition matrix from R to S. Answer the following multiple choice questions (circle the best answer). 											
Question 1:	The kernel of I	is a subspac	e of which sp	ace?		(2 pts)					
	(a) U	(b) V	(c)	\mathbb{R}^3	(d) \mathbb{R}^4						
Question 2:	The range of L	is a subspace	e of which spa	ace?		(2 pts)					
	(a) U	(b) V	(c)	\mathbb{R}^3	(d) \mathbb{R}^4						
Question 3:	From the dime	nsions of U as	nd V , we can	tell that L is	5	(2 pts)					
	(a) one-to-one(b) onto(c) not one-to-	not onto both one-to- neither one-	one and onto to-one nor or) .to							
Question 4:		(2 pts)									
	(a) 0	(b) 1	(c) 2	(d) 3	(e) 4						
Question 5: Which of the following is the first column of A ? (2 p											
	(a) $[\mathbf{u_1}]_R$ (b) $[\mathbf{u_1}]_T$	(c) $[L(\mathbf{u}_1)]$ (d) $[L(\mathbf{u}_1)]$)] _R (e))] _T (f)	$[\mathbf{v_1}]_R$ $[\mathbf{v_1}]_T$	(g) $[L(\mathbf{v_1})]$ (h) $[L(\mathbf{v_1})]$	$]_R$ $]_T$					
Question 6:	Which of the fo	ollowing is the	e first column	n of C ?		(2 pts)					
	(a) $[u_1]_R$ (b) $[u_1]_S$	(c) $[L(\mathbf{u}_1)]$ (d) $[L(\mathbf{u}_1)]$	$)]_{R}$ (e) $)]_{S}$ (f)	$[\mathbf{w_1}]_R$ $[\mathbf{w_1}]_S$	(g) $[L(w_1 (h) [L(w_1 (h) [L(w_1 (h) (h) (h) (h) (h) (h) (h) (h) (h) (h)$	$)]_R$ $)]_S$					
Question 7:	Which of the fo	ollowing is equ	to B ?			(3 pts)					
	(a) CA(b) AC	(c) (d)	$C^{-1}A$ AC^{-1}	(e) (f)	$C^{-1}AC$ CAC^{-1}						

8. Let
$$A = \begin{bmatrix} 9 & -2 & -4 \\ 8 & -1 & -4 \\ 8 & -2 & -3 \end{bmatrix}$$
 and let $P = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & -2 \\ 2 & 1 & 7 \end{bmatrix}$.
 P is an invertible matrix with inverse $P^{-1} = \begin{bmatrix} -9 & 4 & 5 \\ 4 & -1 & -2 \\ 2 & -1 & -1 \end{bmatrix}$.

(a) Prove that the columns of P are eigenvectors of A and find their associated eigenvalues. (6 pts)

(b) Find A^{80} .

Note: Your answer should be a single matrix, but you do not need to simplify the entries. (8 pts)

Bonus: Find the characteristic polynomial of the following 20×20 matrix. (5 pts) You must show work or explain your answer to get credit.

Γ1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
[1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1