Exam 3 Solutions

1. Let S be the following orthonormal basis for \mathbb{R}^{3}.

$$
S=\left\{\frac{1}{3}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right], \frac{1}{3}\left[\begin{array}{c}
-2 \\
2 \\
-1
\end{array}\right], \frac{1}{3}\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right]\right\}
$$

If $\mathbf{v}=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]$, find $[\mathbf{v}]_{S}$.
We want to find x, y, z with
$\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]=x\left(\frac{1}{3}\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]\right)+y\left(\frac{1}{3}\left[\begin{array}{c}-2 \\ 2 \\ -1\end{array}\right]\right)+z\left(\frac{1}{3}\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right]\right)$. As S is orthonormal,
$x=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right] \cdot \frac{1}{3}\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]=\frac{1}{3}(2+2+8)=4, y=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right] \cdot \frac{1}{3}\left[\begin{array}{c}-2 \\ 2 \\ -1\end{array}\right]=\frac{1}{3}(-4+2+-4)=-2$,
$z=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right] \cdot \frac{1}{3}\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right]=\frac{1}{3}(4+1-8)=-1$. Then $[\mathbf{v}]_{S}=\left[\begin{array}{c}4 \\ -2 \\ -1\end{array}\right]$.
2. Let V be a 2-dimensional subspace of \mathbb{R}^{n} with basis $T=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$.

Suppose that $\left\|\mathbf{v}_{\mathbf{1}}\right\|=\sqrt{3},\left\|\mathbf{v}_{\mathbf{2}}\right\|=\sqrt{5}$, and $\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}=2$.
Let $\mathbf{u}=\mathbf{v}_{\mathbf{1}}-2 \mathbf{v}_{\mathbf{2}}$. Find $\|\mathbf{u}\|$.
The length of \mathbf{u} is $\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}$. This formula also tells us that $\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}=3$ and $\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}=5$. Using the properties of dot product, we get that $\mathbf{u} \cdot \mathbf{u}=\left(\mathbf{v}_{\mathbf{1}}-2 \mathbf{v}_{\mathbf{2}}\right) \cdot\left(\mathbf{v}_{\mathbf{1}}-2 \mathbf{v}_{\mathbf{2}}\right)=\left(\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}\right)-2\left(\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}\right)-2\left(\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{1}}\right)+4\left(\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}\right)=$ $3-2(2)-2(2)+5(4)=15$. Therefore $\|\mathbf{u}\|=\sqrt{15}$.
3. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function $L\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\sqrt{x^{2}+y^{2}}$.

Is L a linear transformation? Why or why not?
This is not a linear transformation. It fails both of the linear transformation properties. You only need to show that one fails, but here we will show both.
Property 1: $L(\mathbf{u}+\mathbf{v})=L(\mathbf{u})+L(\mathbf{v})$
If $\mathbf{u}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$, then $L(\mathbf{u}+\mathbf{v})=\sqrt{\left(x+x^{\prime}\right)^{2}+\left(y+y^{\prime}\right)^{2}}$ and $L(\mathbf{u})+L(\mathbf{v})=\sqrt{x^{2}+y^{2}}+\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}$. These are not equal. For example if $\mathbf{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ then $L(\mathbf{u}+\mathbf{v})=\sqrt{2}$ and $L(\mathbf{u})+L(\mathbf{v})=2$.

Property 2: $L(r \mathbf{v})=r L(\mathbf{v})$
If $\mathbf{v}=\left[\begin{array}{l}x \\ y\end{array}\right]$, then $L(r \mathbf{v})=\sqrt{(r x)^{2}+(r y)^{2}}=|r| \sqrt{x^{2}+y^{2}}$ and $r L(\mathbf{v})=r \sqrt{x^{2}+y^{2}}$. These are not equal when $r<0$. For example, if $\mathbf{v}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $r=-1$ then $L(r \mathbf{v})=1$ and $r L(\mathbf{v})=-1$.
Note that L is the length function, so you can also think about these properties visually by representing a vector in \mathbb{R}^{2} with a directed line segment on the $x y$-plane. The two properties are the same as checking if $\|\mathbf{u}+\mathbf{v}\|=\|\mathbf{u}\|+\|\mathbf{v}\|$ and $\|r \mathbf{v}\|=r\|\mathbf{v}\|$. The first one only holds when the vectors point in the same direction and the second only holds when the scalar is non-negative (or the vector is $\mathbf{0}$).
4. Let V be a 3 -dimensional space. Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ and $T=\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ be bases for V with transition matrix from S to T equal to $Q=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & 1 \\ 2 & 1 & -4\end{array}\right]$. Let $\mathbf{u}=2 \mathbf{v}_{\mathbf{1}}+3 \mathbf{v}_{\mathbf{2}}+\mathbf{v}_{\mathbf{3}}$. Find real numbers a, b, c such that $\mathbf{u}=a \mathbf{w}_{\mathbf{1}}+b \mathbf{w}_{\mathbf{2}}+c \mathbf{w}_{\mathbf{3}}$.
Use the equation that $[\mathbf{u}]_{T}=Q[\mathbf{u}]_{S}$. The S coordinate is $[\mathbf{u}]_{S}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$ so
$[\mathbf{u}]_{T}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & 1 \\ 2 & 1 & -4\end{array}\right]\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 7 \\ 3\end{array}\right]$. This means that $\mathbf{u}=\mathbf{w}_{\mathbf{1}}+7 \mathbf{w}_{\mathbf{2}}+3 \mathbf{w}_{\mathbf{3}}$ so $a=1, b=7, c=3$.
5. Let V be the 3 -dimensional subspace of \mathbb{R}^{4} with basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 0 \\ -3\end{array}\right]\right\}$. Find an orthonormal basis for V.
(14 pts)
Let $\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{u}_{\mathbf{3}}=\left[\begin{array}{c}2 \\ -1 \\ 0 \\ -3\end{array}\right]$. Use the Gram-Schmidt formulas to
find an orthogonal basis $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$.

$$
\mathbf{v}_{\mathbf{1}}=\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{2}}=\mathbf{u}_{\mathbf{2}}-\left(\frac{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{u}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\frac{2}{2}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right] \\
& \mathbf{v}_{\mathbf{3}}=\mathbf{u}_{\mathbf{3}}-\left(\frac{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{u}_{\mathbf{3}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}}-\left(\frac{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{u}_{\mathbf{3}}}{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}}\right) \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
2 \\
-1 \\
0 \\
-3
\end{array}\right]-\frac{2}{2}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]-\frac{-4}{2}\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right] \\
& \text { This gives the orthogonal basis } \left.\left\{\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right]\right\} . \text { To get an orthonormal } \\
& \text { basis, divide each vector by its length to get }\left\{\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2} \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right],\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right]\right\} .
\end{aligned}
$$

6. Let $L: P_{3} \rightarrow M_{22}$ be the linear transformation with dim range $L=4$.
(a) Prove that L is invertible.

The range is a 4 -dimensional subspace of \mathbb{R}^{4}, so it must be all of \mathbb{R}^{4} so L is onto.
Using the formula $\operatorname{dim} \operatorname{ker} L+\operatorname{dim}$ range $L=\operatorname{dim} P_{3}$ and plugging in 4 for dim range L and $\operatorname{dim} P_{3}$, we get that $\operatorname{dim} \operatorname{ker} L=0$. Thus the kernel of L is $\{0\}$ and L is one-to-one. L is both one-to-one and onto so it is invertible.
(b) Suppose that $L\left(t^{3}\right)=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]$ and $L(t)=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$. Find $L^{-1}\left(\left[\begin{array}{l}1 \\ 2 \\ 2 \\ 1\end{array}\right]\right)$.

$$
L^{-1}\left(\left[\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right]\right)=L^{-1}\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right)+2 L^{-1}\left(\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]\right)=t^{3}+2 t
$$

7. Let $L: M_{22} \rightarrow \mathbb{R}^{2}$ be a linear transformation $L\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\left[\begin{array}{l}a+b \\ c-d\end{array}\right]$.
(a) Find a basis for the kernel of L.

The kernel of L is all matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $a+b=0$ and $c-d=0$. Thus it is all matrices of the form $\left[\begin{array}{cc}a & -a \\ c & c\end{array}\right]=a\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]+c\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$ so $\operatorname{ker} L=\operatorname{span}\left\{\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]\right\}$. This set is linearly independent, so $\left\{\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]\right\}$ is a basis for $\operatorname{ker} L$.
(b) Find a basis for the range of L.

The range of L is all vectors of the form
$\left[\begin{array}{l}a+b \\ c-d\end{array}\right]=a\left[\begin{array}{l}1 \\ 0\end{array}\right]+b\left[\begin{array}{l}1 \\ 0\end{array}\right]+c\left[\begin{array}{l}0 \\ 1\end{array}\right]+d\left[\begin{array}{c}0 \\ -1\end{array}\right]$ so
range $L=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1\end{array}\right]\right\}=\mathbb{R}^{2}$. This has basis $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$.
(c) Is L one-to-one? Is L onto?
L is not one-to-one as the kernel is nontrivial. It is onto as the range is all of \mathbb{R}^{2}.
(d) Find the representation of L with respect to S and T where

$$
S=\left\{\left[\begin{array}{ll}
1 & 1 \tag{12pts}\\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\right\} \text { and } T=\left\{\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\} .
$$

Plug each of the vectors from S into L, then take coordinates with respect to T.
$L\left(\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 0\end{array}\right]=0\left[\begin{array}{c}1 \\ -1\end{array}\right]+2\left[\begin{array}{l}1 \\ 0\end{array}\right]$ so the coordinate is $\left[\begin{array}{l}0 \\ 2\end{array}\right]$.
$L\left(\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 1\end{array}\right]=-\left[\begin{array}{c}1 \\ -1\end{array}\right]+4\left[\begin{array}{l}1 \\ 0\end{array}\right]$ so the coordinate is $\left[\begin{array}{c}-1 \\ 4\end{array}\right]$.
$L\left(\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]\right)=\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}1 \\ -1\end{array}\right]+0\left[\begin{array}{l}1 \\ 0\end{array}\right]$ so the coordinate is $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
$L\left(\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]\right)=\left[\begin{array}{c}1 \\ -2\end{array}\right]=2\left[\begin{array}{c}1 \\ -1\end{array}\right]-\left[\begin{array}{l}1 \\ 0\end{array}\right]$ so the coordinate is $\left[\begin{array}{c}2 \\ -1\end{array}\right]$.
These are the columns of the representation, so it is $\left[\begin{array}{cccc}0 & -1 & 1 & 2 \\ 2 & 4 & 0 & -1\end{array}\right]$.

