Math 3333
 Spring 2015 Midterm 3

Name:

Problem	Points
Problem 1 (10pts)	
Problem 2 (12pts)	
Problem 3 (10pts)	
Problem 4 (10pts)	
Problem 5 (14pts)	
Problem 6 (14pts)	
Problem 7 (30pts)	
Total	

1. Let S be the following orthonormal basis for \mathbb{R}^{3}.

$$
S=\left\{\frac{1}{3}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right], \frac{1}{3}\left[\begin{array}{c}
-2 \\
2 \\
-1
\end{array}\right], \frac{1}{3}\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right]\right\}
$$

$$
\text { If } \mathbf{v}=\left[\begin{array}{l}
2 \tag{10pts}\\
1 \\
4
\end{array}\right] \text {, find }[\mathbf{v}]_{S}
$$

2. Let V be a 2-dimensional subspace of \mathbb{R}^{n} with basis $T=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$. Suppose that $\left\|\mathbf{v}_{\mathbf{1}}\right\|=\sqrt{3},\left\|\mathbf{v}_{\mathbf{2}}\right\|=\sqrt{5}$, and $\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}=2$.
Let $\mathbf{u}=\mathbf{v}_{\mathbf{1}}-2 \mathbf{v}_{\mathbf{2}}$. Find $\|\mathbf{u}\|$.
3. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function $L\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\sqrt{x^{2}+y^{2}}$. Is L a linear transformation? Why or why not?
4. Let V be a 3 -dimensional space. Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ and $T=\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ be bases for V with transition matrix from S to T equal to $Q=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & 1 \\ 2 & 1 & -4\end{array}\right]$. Let $\mathbf{u}=2 \mathbf{v}_{\mathbf{1}}+3 \mathbf{v}_{\mathbf{2}}+\mathbf{v}_{\mathbf{3}}$. Find real numbers a, b, c such that $\mathbf{u}=a \mathbf{w}_{\mathbf{1}}+b \mathbf{w}_{\mathbf{2}}+c \mathbf{w}_{\mathbf{3}}$.
5. Let V be the 3 -dimensional subspace of \mathbb{R}^{4} with basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 0 \\ -3\end{array}\right]\right\}$.
Find an orthonormal basis for V.
6. Let $L: P_{3} \rightarrow \mathbb{R}^{4}$ be a linear transformation with dim range $L=4$.
(a) Prove that L is invertible.
(b) Suppose that $L\left(t^{3}\right)=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]$ and $L(t)=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$. Find $L^{-1}\left(\left[\begin{array}{l}1 \\ 2 \\ 2 \\ 1\end{array}\right]\right)$.
7. Let $L: M_{22} \rightarrow \mathbb{R}^{2}$ be the linear transformation $L\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\left[\begin{array}{l}a+b \\ c-d\end{array}\right]$.
(a) Find a basis for the kernel of L.
(b) Find a basis for the range of L.
(c) Is L one-to-one? Is L Onto?
(d) Find the representation of L with respect to S and T where

$$
S=\left\{\left[\begin{array}{ll}
1 & 1 \tag{12pts}\\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\right\} \text { and } T=\left\{\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
$$

