Math 3333
 Spring 2015 Midterm 1

Name:

Problem	Points
Problem 1 (8pts)	
Problem 2 (12pts)	
Problem 3 (24pts)	
Problem 4 (24pts)	
Problem 5 (12pts)	
Problem 6 (22pts)	
Total	

1. Is the vector $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ a linear combination of the vectors $\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right]$? Why or why not?
(8 pts)
2. Suppose A and B are $n \times n$ matrices and that A is symmetric and B is skew symmetric. Determine if $A B$ is symmetric, skew symmetric, both, or neither.
Either give a proof (if your answer is symmetric, skew symmetric, or both), or find an example which shows that $A B$ can be neither.
3. Let $A=\left[\begin{array}{cccc}0 & 1 & 2 & 0 \\ 0 & 5 & 0 & -1 \\ 2 & 0 & 3 & 4 \\ 0 & -1 & 1 & 0\end{array}\right]$. Compute the following determinants.
(a) $\operatorname{det}(A)$
(b) $\operatorname{det}\left(2 A^{-1}\right)$
(c) $\operatorname{det}\left(A^{T} A\right)$
(d) $\operatorname{det}\left(A^{T}-A\right)$
4. Let $A=\left[\begin{array}{lll}1 & 0 & 3 \\ 2 & 1 & 6 \\ 1 & 1 & 4\end{array}\right]$.
(a) Find A^{-1} or show that A is not invertible.
(b) Use your answer to part (a) to find the solutions to $A^{2} \mathbf{x}=\mathbf{b}$ where

$$
\mathbf{b}=\left[\begin{array}{l}
0 \tag{12pts}\\
1 \\
1
\end{array}\right]
$$

5. Suppose A is a 4×3 matrix and that the linear system $A \mathbf{x}=\mathbf{b}$ has exactly one solution for some 4 -vector \mathbf{b}.
(a) If possible, find the RREF of A. Otherwise describe what can be said about the RREF of A from the given information.
(b) If \mathbf{c} is another 4 -vector, what are the possible numbers of solutions to the linear system $A \mathbf{x}=\mathbf{c}$?
6. Consider the linear system:

$$
\begin{gathered}
-a-2 b+d-2 e=2 \\
a+2 b+3 c-5 d+15 e=-11 \\
2 a+4 b+c-d+6 e=7
\end{gathered}
$$

(a) Find the augmented matrix of the linear system.
(b) One of the following is the reduced row echelon form (RREF) of the augmented matrix. Circle it.
$\left[\begin{array}{ccccc:c}1 & 2 & 0 & 0 & 1 & 4 \\ 0 & 1 & 1 & 0 & 3 & 5 \\ 0 & 0 & 0 & 1 & -1 & 6\end{array}\right]$
$\left[\begin{array}{ccccc:c}1 & -3 & -2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & -6 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$
$\left[\begin{array}{ccccc:c}1 & 2 & 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 0 & 3 & 5 \\ 0 & 0 & 0 & 1 & -1 & 6\end{array}\right]$
$\left[\begin{array}{ccccc:c}1 & 2 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 3 & -11 \\ 0 & 0 & 0 & 1 & -1 & 7\end{array}\right]$
(c) Find all solutions to the linear system. Write your answer as a vector.
(8 pts)

