Review for Final Exam

1. If A is an invertible matrix n X n matrix, which of the following must be true?

(a)
(b)
()
(d)
(e)
(f)

det(A) = 1.

The columns of A are an orthogonal set in R™.
0 is not an eigenvalue of A.

The reduced row echelon form of A is I,,.

A is diagonalizable.

The rows of A are a basis for R,,.

Answer: c,d,f

(a)

2 300 -6
0 001 5
-1 06 3 3
0 142 0

Find the RREF of A.

The following row operations will put A into RREF. r; < r3, —r; — 7y,
To 4> Ty, '3—2r1 —> 13, r3— 37y —> '3, '3 <> Iy, 71+ 313 — 11, "9 — 213 — 3.
1 0 -6 0 12

. . 1 4 0 —10
The resulting matrix is 00 o 1 5 |
00 0 0 O

What are the rank and nullity of A?

The rank is 3 and nullity is 2. The rank is the number of leading ones in
RREF and the nullity is the number of columns without leading ones in
RREF and the sum of the two equals the number of columns.

Find a basis for the null space of A.

The nullity is 2 so a basis for the null space will contain two vectors.
The null space is the same as the solution space of Ax = 0 which can
be found using the RREF of A. If we label the variables as a,b,c, d,e
then we see from the RREF that the system Ax = 0 is equivalent to
the system a — 6¢ + 12¢ = 0,b + 4¢c — 10e = 0,d + 5e = 0. Columns 3

1



(f)

and 5 do not contain leading ones so the variables ¢ and e can be any-
thing and the other variables can be written in terms of ¢ and e. In
particular a = 6¢ — 12e,b = —4c + 10e,d = —5e. The null space is all

6c — 12e 6 —12
—4c 4+ 10e —4 10
vectors of the form c =c| 1 |+e 0 and has basis
—be 0 -5
e 0 1
6 —12
—4 10
1 , 0
0 -5
0 1

Find a basis for the column space of A.

The rank is 3 so both the column space and row space of A have dimension 3
so the bases in this part and the next part will have size 3. The leading ones
in RREF are in columns 1, 2,4 so columns 1, 2, 4 of the original matrix will

2 3 0

. - 0 0 1

be a basis for the column space so a basis is T N P R
0 1 2

Find a basis for the row space of A.

The nonzero rows from RREF form a basis for the row space so a basis is
{{f1 0 -6012],]0 140 —-10],[]000 1 5]}

_q 1
Let b = 161 . Prove that |1]| is a solution to Ax = b. Find all the
1
7 1
solutions to Ax = b.
2 3 0 0 —6 i —1
0O 001 5 6 ) )
106 3 3 1 = 11| The other solutions to Ax = b will
0O 1 4 2 0 1 7



look like the particular solution plus solutions to the homogeneous lin-

—_ = = = =

14 6¢c—12¢

1 —4c+ 10e
ear system. Therefore the solutions are all vectors of the form 1+c¢
1—5e
1+e

3. Let A and B be n x n matrices such that det(A) = 4, det(B) = —1.
(a) What is det(A2BT)?

det(A2BT) = det(A) det(A) det(BT) = det(A)?det(B) = —16.
(b) What are the rank and nullity of A?BT?

A?BT is invertible as its determinant is nonzero so it has rank n and nullity
0.

(c) Let c be a fixed vector in R". How many solutions does A>B”x = ¢ have?
What are the solutions?

As A%BT is invertible, any linear system A2BTx = c has exactly one

solution which looks like x = (A2BT)~!c. This can also be written as
(BT)=1(A%)"tc or as (B71)T(A™1)2c.

a? 1 0 1
4. For what values of a is | —3a | in span 2 (0,1 11,]3 ?
-2 3 1 4
a? a? 1
If | —3a| is in the span of these vectors, then we can write |—3a| =z [2| +
-2 -2 3
0 1
y |1|+2 |3]| for some z,y, z. Treating a as a constant, this is the linear system
1 4

z, —3a =2x 4+ y+ 3z, —2 = 3x +y + 4z. This has augmented matrix

(12

a’> =z +
10 1,
21 3 : —3a . The row operations ro — 2ry — 19,173 — 311 — 13,13 — 19 —>
3 1 41



rg will put the left side of the matrix into RREF. The resulting matrix is
101, a?
01 1, —3a—2a . This has solutions if and only if 0 = —2 — a® + 3a.
000 —2-a”+3a

Equivalently, a*> — 3a + 2 = 0 and this factors as (a —2)(a—1) =0so a =1,2.

Note that the span of the three vectors was not all of R?. This is because the
last vector is the sum of the first two. So we could have deleted the third vector
without changing the span and done the problem using just the first two vectors.

We can check this answer by making sure that when a = 1 or a = 2 the vector

a? 1 1 0
really is in the span. When a =1, |—-3a| = |=3| = [2| =5 [1]|. When
—2 —2 3 1
a® 4 1 0
a=2, |=3a|l = |-6| =42 —-14 |1].
—2 —2 3 1

. Determine if the following statements are true or false. Give a proof or coun-
terexample.

(a) If U and W are subspaces of a vector space V and dim U < dim W, then
U is a subspace of W.

False. For U to be a subspace of W it would have to be contained in WW.
This does not always have to be the case. For example, take V = R? and
U to be a 1-dimensional subspace and W to be a 2-dimensional subspace.
The 1-dimensional subspaces of R? are exactly the lines through the origin
and the 2-dimensional subspaces are planes though the origin. Given a
line and plane though the origin, it is not true that the line must be on
the plane. For example, take U to be the z-axis which is all vectors of the

0
form [0| and take W to be the xy-plane which is all vectors of the form
z
x
yl.
0
1
(b) Any subspace of R which contains the vectors | 2 | and | 1 | must also
-1 —2



1
contain the vector | 1
—1

True. Subspaces are closed under scalar multiplication and addition so if a
subspace contains a set of vectors then it must contain all linear combina-
1 1 2 1
tions of those vectors. In this case, | 1 | = % 2|+ % 1 [so |1
—1 —1 —2 -1
is a linear combination of the other two vectors.

6. Let S be the following set of vectors in R*.

1 0 3 —7 1
0 2 1 6 0
5= Of(" 1o’ fo|"f 0 7| -1
1 6 6 11 0

(a) Find a subset of S which is a basis for span S.

One way to do this is to construct a matrix whose columns are the vectors
in S. Then put the matrix in RREF and the columns with leading ones
will correspond to the vectors of S which are the basis for span S. The

103 -7 1

. 021 6 0
matrix would be 000 0 -1l We do not actually need to go

16 6 11 0

all the way to RREF, just far enough that it is clear which columns will
have leading ones. Doing the row operations ry — r;y — 14,74 — 319 —

103 -7 1
021 6 0 . : .
T4,T4 — T3 —> T4 We get 000 0 _1 . The leading ones will be in
000 O
columns 1,2, 5 so We take the first, second and fifth vectors of S and our
1
0

r
1

.. 0 2

basis is ol 1ol

1 6

Does S contain a basis for R*? Is S contained in a basis for R*?

S does not contain a basis for R* because if it did then the span of S would
be all of R* but the span of S is only 3-dimensional.



S is not contained in a basis for R* because it is too big. Any basis for
R* will contain exactly 4 vectors so it will not be able to contain a set of
5 vectors.

7. Fix a real number A and a nonzero vector v in R™. Determine if the following
sets are subspaces of M,,,.

(a)

The set of all n x n matrices with eigenvalue \.

This is not a subspace of M,,,. Suppose we try to check closed under addi-
tion. If A and B are matrices with eigenvalue A\, then Av; = Avy for some
nonzero vector vi and Bvy = Avy for another nonzero vector vy. Since
vy and vg may not be the same vector, there is no obvious way to prove
that A would have to be an eigenvalue of A + B. We therefore look for a
counterexample to show that it doesn’t have to be.

Suppose A = 0. Then the matrices which have A = 0 as an eigenvalue
are exactly the matrices for which Ax = 0 has a nontrivial solution. This
is the set of matrices which are not invertible. This is not closed under

1 . . . .
00 and 8 (1) are both in the set of non-invertible matri-
ces but their sum is the identity which is invertible. These two matrices
both have eigenvalue 0 but their sum does not. This example shows that
this set does not have to be a subspace because it is not necessarily closed

under addition.

addition as

Note: When X # 0, it’s still not a subspace, since it does not contain the
zero matrix.

The set of all n x n matrices with eigenvector v.

This is a subspace. As v # 0, it is an eigenvector of the zero matrix O
since Ov = 0 = Ov. This set therefore contains the zero matrix so it is
nonempty. Next check closed under addition. Suppose A and B both have
eigenvector v. Then Av = A\;v and Bv = v for some scalars Ay, As.
Their sum has (A+ B)v = Av+ Bv = \v+ Aov = (A + A\g)v. Therefore
A+ B also has eigenvector v, with associated eigenvalue \;+X\,. Next check
closed under scalar multiplication. If A has eigenvector v then Av = \;v.
For any real number r, (rA)v = r(Av) = r(A\v) = (rA\;)v so rA has v as
an eigenvector with associated eigenvalue r\;.



1 1

8. Let A = . Determine if (u,v) = u”Av is an inner product on R

-1 2
Either show that it satisfies all four properties of an inner product or give an
example of vectors that show it fails one of the properties.

This is not an inner product. It satisfies properties 1, 3, and 4 of inner products
but fails property 2 that (u,v) = (v,u) for all vectors u,v. For example,

consider the vectors (1) and (1)

(BEREEIES TR
(BB R EHIHEEEN

. Let S = {t?,t,1} be the standard basis for P. Define an inner product on P,
by (p(t),q(t)) = [p(t)]s - [q(t)]s. Let W be the subspace of all polynomials p(t)
in P, such that p(2) = 0.

(a) Find an orthogonal basis for .

Start by finding any basis for W. Is p(t) is in P, then it looks like
p(t) = at®> + bt + c¢. Then p(2) = 4a + 2b + ¢ so W is the set of all
polynomials of the form at? + bt + ¢ such that 4a + 20+ ¢ = 0. If we solve
for ¢ we get ¢ = —4a — 2b so W is the set of all polynomials of the form
at? +bt —4a — 2b = a(t* — 4) + b(t — 2). This is spanned by {t* —4,t — 2}
and these are linearly independent vectors so they are a basis for W.

Next transform the basis to an orthogonal basis using Gram-Schmidt.
This maybe slightly easier if we reorder the basis to be {t — 2,t* — 4}.
Let uy = t — 2,us = t* — 4. The new basis will be {vy,va}. Then

(uz,vi1)

vi=u =t—2and vy = ~ v V1 + ugp. The inner products are
1 0
(UQ,V1)2<t2—4,t—2): 0 . 1 :8, (V17V1>:(t—2,t—2):
—4 —2
0 0
1|-| 1] =5 Therefore vo = —2(t — 2) + (¢* — 4). If we want to
-2 -2

avoid fractions, we can replace this with a scalar multiple, in particular 5
times this vector. So we take vo = —8(t — 2) + 5(t* — 4) = 5t* — 8t — 4.
The orthogonal basis is {t — 2,5t — 8t — 4}.



Note: There are a lot of other possible correct answers to this problem.
For example, if we solved for a or b in the beginning instead of ¢, then we
would get a different basis. Or if we had written the basis in the other
order or not cleared out fractions, the result of the G-S process would be
different. Any set of two nonzero polynomials which are in W and have
inner product 0 will be an orthogonal basis for W. So if you got a slightly
different answer, say {p(t),q(t)} with p,q # 0, you can check it by seeing

if p(2) =0,q(2) = 0 and (p(t),q(t)) = 0.
(b) Find a basis for W+.

W+ is the set of all vectors in P, which are orthogonal to every vector
in W. If at®> + bt + c is orthogonal to a basis for W, then it will be or-
thogonal to all vectors in W. So we only need to find vector in P, which
are orthogonal to a basis for W. We can use any basis for W to do the
problem. Here we will take the basis {t> — 4,¢ — 2} from the beginning of
the solution to part (a). For at? + bt + ¢ to be orthogonal to t* — 4, we

a 1
need 0 = (at®> + bt + ¢, t* —4) = |b| - | 0 | = a — 4c. To be orthogo-
c —4
a 0
nal to t — 2, we need 0 = (at> + bt +c,t —2) = |[b| - | 1 | =b— 2
c -2

The vectors in W+ are of the form at? + bt + ¢ with a — 4c = 0 and
b—2c = 0. This is a homogeneous linear system and the solutions are that
¢ can be anything and b = 2¢,a = 4c. So W+ is all vectors of the form
4et? + 2ct + ¢ = c(4t? + 2t + 1). A basis for this space is {4t? + 2t + 1}.

As a check, we verify that dim W + dim W+ = dim P,. From part (a),
dim W = 2 and from the above dim W+ = 1 and dim P, = 3 so the equa-
tion is satisfied.

10. Let A be a fixed n x n matrix. Define L : M, — M,, tobe L(X) = AX — X A.

(a) Prove that L is a linear transformation.

LX+Y) = AX+Y)-(X+Y)A = AX + AY - XA -YA =
(AX — XA) + (AY — YA) = L(X) + L(Y) and L(rX) = ArX — rXA =
r(AX — XA) =rL(X) so L is a linear transformation.



11. Let L: P3 — R* be the linear transformation L(p(t)) = | 7,

(b) Is L one-to-one? Is L onto?

L is not one-to-one. To check if it is one-to-one, we need to check if
ker L = {0}. The kernel is all matrices X in M,,, such that AX — XA =0,
or all X with AX = X A. Even though we do not know what A is, there is
at least one nonzero matrix which is guaranteed to have this property. If
we take X = I, the n x n identity, then AX = Al = Aand XA=1A=A
so I is in the kernel of L. As the kernel contains more than just the zero
matrix, the map is not one-to-one.

L is also not onto. This is because dim M,,,, = dimker L + dimrange L.
As the kernel has dimension greater than 0, the dimension of the range
must be less than the dimension of M,,, (which is n?). Therefore the range
cannot be all of M,,, so L is not onto.

p(0)
/

P'(0) . Prove that
p"(0)

(
p///(o)
L is invertible and find L~!.

If p(t) is in Py, it looks like p(t) = at® + bt* + ¢t + d. Then p(0) = d,
p'(t) = 3at* +2bt +cso p'(0) = ¢, p’(t) = 6at +2b so p”(0) = 2b, and p” (t) = 6a

SH

so p"(0) = 6a. We can therefore rewrite L as L(at® + bt? + ct +d) = 2Cb . We
6a
can show L is invertible and find its inverse using a representation. To do this,

we need to pick bases for Py and R*. Take S = {t3,#¢,1} and T to be the

0 0 0
standard basis for R*. Then L(t°) = 0 ,L(t7) = 5 JL(t) = 0 ,L(1) =
6 0 0
1
8 . Taking coordinated with respect to T" does not do anything as 1" is the
0

standard basis for R*. The representation of L with respect to S and T is



00 01
0010 . . .. )
A = 020 0 Then det(A) = 12 which is nonzero so A is invertible
6 0 0 0
00 0 1/6
and thus L is also invertible. The inverse of A is A~ = 8 (1) 1(/)2 8
1 0 O 0
L=! : R* — Py has the property that [L=!(v)]s = A7![v]r. Note that as
T is the standard basis for R*, [v]r = v so [L7}(v)]s = A~ 'v. If we write
a a 00 0 1/6] [a (1/6)d
b e oo 12 o sl |2
vV = . then |L . =101 o 0 ol = b . There-
d dl)], 1o o o]ld a
a
fore L1 b = %dt‘?’ + %cﬁ2 + bt + a.
c
d

Note: This problem is actually a little easier if you pick S = {1,t,t%,t3}, as the
representation is diagonal so the determinant and inverse are easier to compute.
Any choice of bases will give you the same result in the end though.

12. Let L : Py — My be the linear transformation L(at® + bt*> + ct + d) =
a—c 2c+d
b+d 2a—10b |

(a) Find bases for the kernel and range of L.

To be in the kernel of L, a polynomial at® + bt? 4 ct 4+ d must have a — ¢ =
0,2¢+d=0,b+d=0,2a—b=0. This forcesa = ¢,d = —2¢,b = —d = 2¢
and the kernel is all polynomials of the form ct® + 2¢t? + ct — 2c which has
basis {t3 + 2t* + ¢ — 2}.

Using that dim ker L+dim range L = dim P; we get that the range will have

) ) ) ) a—c 2c+d |
dimension 3. The range is all matrices of the form btd 2a—b ] =
10 0 O -1 2 01 .
G{O 2}+b{1 _1}+c{ 0 O}er[l 0}.Thesefourmatrlces

span the range but are not a basis for the range as the range only has di-
mension 3. One of the matrices must be a linear combination of the others.

10



10 0 2 1 0 0
we can delete the fourth matrix without changing the span. We thus get

that{[l O],[O 0 },{_1 2]}isabasisfortherangeofL.

Weseethat[o 1}:(1/2){1 O}H{O _011+(1/2){_1 2]so

0 2 1 -1 0 0

Note: In this case, any one of the four matrices that span the range can
be written as linear combination of the other three, so we can delete any
one of them to get a basis for the range.

Find the representation of L with respect to the bases S = {t3,#* ¢,1} and

(3 o) [34] 8 8H8 )

10 0 0 -1 2 0 1
3y 2y _ _
LY =10 o | L= |1 1 t_{o 0}’L {10'
1 0 -1 0
0 0 2 1
The coordinate vectors with respect to 1" are 0 1 - 1
2 0 0

respectively. Putting these together, we get that the representation is
1 0 -1 0

0 0 2 1
0 1 0 1
2 -1 0 0

Let ' = {33 =, 3 +t>* —t, > +t* + ¢t — 1} and let

R EIR R

Find the representation of L with respect to S’ and 7" two different ways:
directly and using transition matrices.

Method 1: To compute the representation directly, we need to plug the

10 s o [ 10 ,
0 g | LE=) =] 3}7L(t +
2 0 1

—2
2 _ gy 3 42 T
t t)—ll 11,L(t+t+t D=1, 1

the coordinate vectors of each of these with respect to 7". We're looking

forx,y,z,wsuchthat{l O}I:U[l 0]+y{ 0 1}—1—2{0 1]—1—

vectors from S’ into L. L(t3) =

} . We then need to find

0 2 01 -1 0 0 0

w [ _01 8 . Equivalently, we’re solving the system x —w = 1,y + z =

11



0,—y = 0,2 = 2 which has solution x = 2,y = 0,z = 0,w = 1 so the

2
) ) 0 .. 1 0 , )
coordinate vector is L Similarly, for 1 3 we're solving xr —w =
1
l,y+2=0,—y = —1,2 = 3which hassolutionx =3,y =1,z = —1,w =2
3
) ) 1 . 2 =2
so the coordinate vector is R The coordinate vectors of 11
2
1 1
0 1 -1 0
and [ 01 } are 1 and 1
-1 1

3 1
1 -1
-1 -1
2 -1

] respectively. Putting these together
2

L 0

we get that the representation is 0

1

—_ = O =

Method 2: Suppose A is the representation with respect to S and T and B
is the representation with respect to S’ and 7. Then B = Q~'AP where
P is the transition matrix from S’ to S and @ is the transition matrix
from 7" to T. To find P, we need to find the coordinate vectors of the
vectors in S with respect to S. As S is the standard basis for Pz, the
coordinate vectors are just the coefficients of the polynomials which are

1 1 1 1 11 1 1
0 ~1 1 1 0 -1 1 1
ol o "=t 1| %°P=1]0 0o -1 1 The
0 0 0 —1 00 0 -1

matrix Q7! is the transition matrix from 7 to 7”. This is a more work
to compute than P. We can either compute () (the transition matrix
from 7’ to T) and then find its inverse, or we can compute Q! di-
rectly by finding the coordinate vectors with respect to 1" for each vec-
tor in 7. We will take the second approach. The first vector in 7' is

10 . 10 10
0 o |sowe are looking for z, ¥y, z, w such that { 00 } =x { 01 } +
0 1 0 1 -1 0
y{_l 0]—}—,2{0 0}+w{ 0 0}.Weseethatweneedm—y—2—
0
0,w = —1 so the coordinate vector is 8 . The coordinate vectors of
—1

12



0 0 1
01 0 0 00 : 0 —1 0 .
{O 0]7[1 0],[0 1} will be 1 Lo respectively.
0 0 1
0 0 0 1
- 1 0 0 -1 0 . 1
This gives us that Q7 = o1 1 0l Multiplying out QAP we
-1 0 0 1

get the same answer as in method 1.

13. Let L : P, — P, be the linear transformation given by L(at+b) = (2a+b)t —a.

(a)

Find the representation A of L with respect to the basis {t + 1,t — 1}.

We'll refer to the basis {t + 1,t — 1} as T. We first plug both vectors
from T into L to get L(t + 1) = 3t — 1 and L(t — 1) =t — 1. We then
need to find the coordinate vectors with respect to T'. So we need to find
z,y such that 3t — 1 =z2(t+1)+y(t—1)sox+y =3, —y = —1 and

we get that x = 1,y = 2 and the coordinate vector of 3t — 1 is { é }
Similarly, the coordinate vector of t —1 is [ (1J } . Put these together to get

the representation A = { ; (1] } .

Find the eigenvalues and eigenvectors of A.

First take det(\, — A) = det ({ )\__21 \ 9 ] ]) = (A—1). So the only
eigenvalue is A = 1 with multiplicity 2. The eigenvectors will be solutions

to { _02 8 | 8 } . This system is =2z = 0 so x = 0 and y is anything. The

. . 0 .
eigenvectors look like { . where c¢ is a nonzero constant.

Use the results from the previous part to find the eigenvalues and eigen-
vectors of L.

The eigenvalues of L and A are the same so the only eigenvalue of L is
A =1. A vector p(t) € P, will be an eigenvector of L if and only if [p(¢)]r

. . . 0
is an eigenvector of A, i.e. if [p(t)]r = { . } for some nonzero constant c.

13



So p(t) =0(t+ 1) + ¢(t — 1) = ¢t — ¢ for some nonzero constant c.

14. For each matrix A, find its eigenvalues and a basis for the associated eigenspaces.

2 -6 1
(a) A= 0 -1 0
-2 4 -1
A—2 6 -1
det(\ — A) = det 0 A+1 0 — A\ +1)(A — 1). The
2 -4 A+1

eigenvalues are A = 0 with multiplicity 1, A = 1 with multiplicity 1, and
A = —1 with multiplicity 1.

-2 6 -1,
When A = 0, we get the augmented matrix 0 1 0 ,0|. This
2 -4 -1 | 0
2 0 1,0]
reduces to | 0 1 0,0 | which is the system 2z + z = 0,y = 0. The
0000
[ 1
solutions are of the form 0 which has basis 0
| —2x -2
-1 6 -1.0
When A = 1, we get the augmented matrix 0 2 0,0 The
2 -4 210
1 0 1.0
RREFis | 0 1 0,0 | which is the system z 4+ z = 0,y = 0. The solu-
00 0'0
—z -1
tions are of the form 0 which has basis 0
z 1
-3 6 —1,0
When A = —1, we get the augmented matrix | 0 0 0 ;0 |. The
2 -4 010
1 =2 0,0 ]
RREFis [ 0 0 1,0 | which is the system x — 2y = 0,z = 0. The
0 0 0'0
[ 2y 2
solutions are of the form | y | which has basis 1
0 0

14



A—=3 0 0
det(A 3 — A) = det 2 A-3 2 = (A —3)*(A—5). The
-2 0 X=5
eigenvalues are A\ = 3 with multiplicity 2 and A = 5 with multiplicity 1.

0

|

0 | which has
10

—z
thing and x = —z. The solutions have the form Y which has basis
z
-1 0
0 |,|1
1 0
2 000
When A = 5 we get the augmented matrix 2 2 2,0 | which has
-2 0 010
10 0,0
RREF | 0 1 1,0 |. Thisis the system x = 0,y + z = 0. The solutions
00 00
0 ] 0
have the form | —z | which has basis -1
z ] 1
4 2 00
3300
A= 00 25
0 00 2

A—4 =2 0 0
-3 A-=3 0 0
0 0 A—2 =5
0 0 0 A—2
2)%2(A — 6). The eigenvalues are A = 1 with multiplicity 1, A = 2 with
multiplicity 2, and A = 6 with multiplicity 1.

det(A\y — A) = det = AN=1)\ -

15



-3 =2 0 0.0
B .| -3 =2 0 0,0
When A = 1 we get the augmented matrix 0 0 -1 -5'0 . The
0O 0 0 =110
1 2/3 0010
RREF is 0 0 10, hich is the system = + (2/3)y = 0,z =
0 0 010" Y y=uET
0 0 000
—(2/3)y
0,w = 0 so the solutions are of the form ?(J) which has basis
0
[ —2/3
(1) . If you don’t like fractions, you could instead take the basis
\ L 0
([ -2
3
0
L[ 0
-2 =2 0 0.0
When A = 2 we get the a ented matri —10 0,0 The
nA=2weg ugmented matrix 0 0 0 50|
0O 0 0 010
100 0:0
10 100,0 o B B B
RREF is 00010 which is the system z = 0,y = 0,w = 0 so
00000
0 0
. 0 . . 0
the solutions are of the form p which has basis 1
0 0
2 =20 0.0
When A = 6 we get the augmented matrix 3.0 0,0 The
—oves & 0 0 4 —5'0 |
0 0 0 410
1 =10 010
RREF is 0 0 10, hich is the syste —y=0,2=0,w=0
i 00 010 which i ystemz —y =0,z =0,w =
0 0 000

16



so the solutions are of the form which has basis

oow w
O O = =

15. For each of the matrices in the previous problem, determine if A is diagonaliz-
able. If it is diagonalizable, find a diagonal matrix D and an invertible matrix
P such that D = P7'AP and find A%,

(a)

This matrix is diagonalizable as it has three distinct eigenvalues (i.e. each
eigenvalue has multiplicity 1). D will be the diagonal matrix with the
eigenvalues of A along the diagonal and P will be the matrix whose columns
are the corresponding eigenvectors. It doesn’t matter what order we put
the eigenvalues in (so there’s more than one correct answer for D and P),
but we must make sure the ordering of the eigenvectors matches the orders

00 0 -1 1 2
of the eigenvalues. D= | 0 1 0 and P = 0O 0 1]|. D=
00 —1 2 -1 0

P7'AP so A= PDP~! and A = PDOpP~1 To compute A we first

need to compute P~!. We do this by starting with the augmented matrix

[P : I] and doing row operations until the left side is I and the matrix
-1 1 2/100

on the right will be P~ We start with | 0 0 1,0 1 0 |. Doing
2 -1 0'0 0 1

the row operations 2ry 4+ r3 — 13, 79 <> 13, ro — 4713 — ro, 11 + 2r3 — 11,

1001 —21 1 -2 1
ro+ri—riweget | 001 0/2 =4 1 |soP =2 —4 1].We
00 10 1 0 0O 1 0
then multiply everything out to get that
-1 1 2 00 0 1 -2 1
A = pptop-t— | o 0 1 0 1 0 2 —4 1
2 =10 0 0 (—1) 0 1 0
2 —4+2(-1)10 1 2 -2 1
= 0 (—1)t00 0 = 0O 1 0
-2 4 -1 -2 4 -1

This matrix is diagonalizable. For each eigenvalue, the dimension of the
eigenspace matches the multiplicity of the eigenvalue. The basis vectors
for each of the eigenspaces give us three linearly independent eigenval-

5 0 0 0 -1 0
wes. D= |03 0| and P= | -1 0 1 |. To find P!, we
00 3 1 1 0
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0 -1 0,100
start with | =1 0 1,0 1 0 Doing the row operations —r; —
1 1 0'0 0 1
T17T2—|—T3—)T2,T2—7‘1—)T2,’I" -7 —>7“3,7“1(—>’I“3,T‘2<—)T3, we get
1 00,1 0 1] 1 0
01 0,-100]|soP!'=|-10 O . We then multiply every-
00 11 11 1 11
thing out to get that =
[0 -1 0 51000 0 1 01
A = pptOp-t = 1 0 1 0 3% 9 -1 00
1 1 0 0 0 3100 1 11
3100 0 0
3100 _ 5100 9100 3100 _ 5100
5100 . 3100 0 5100

(c) This matrix is not diagonalizable as A = 2 is an eigenvalue with multiplicity
2 but the eigenspace only has dimension 1.

16. Let A be an n x n matrix. Do A and A" have the same eigenvalues? Do A and
AT have the same eigenvectors?

They have the same eigenvalues. To prove this we will show they have the same
characteristic polynomial. The characteristic polynomial of A is det(A] — A) =
det((AN — A)T) = det((A)T — AT) = det(A\] — AT) which is the characteristic
polynomial of AT. Note that we have used that taking the transpose doesn’t
change the determinant and that Al is a symmetric matrix. The eigenvalues
are the roots of the characteristic polynomial so as A and A” have the same
characteristic polynomials they also have the same eigenvalues.

They do not have the same eigenvectors however. Take for example A =

[ L1 } The vector x = [(1)}isaneigenvectoroansAx: [ 1 1} [ 1 } =

0 1 0 1 0
1| r— 110 1] |1 Do :
{0] = x. However A x—{l 1} [01 —{1} which is not a multiple of

x. We see that x is an eigenvector of A but not of AT,

17. Let A and B be n x n matrices. Suppose there exists a basis S for R” such that
all vectors in S are eigenvectors of both A and B. Prove that AB = BA.
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As there are n linearly independent eigenvectors of A and of B (the vectors
in ), these matrices are both diagonalizable. In fact, since they have a com-
mon basis of eigenvectors, the invertible matrix used to diagonalize them is the
same. So there exists diagonal matrices D; and D, and an invertible matrix
P such that D; = P7'AP and Dy = P 'BP. In particular, the columns of
P are the vectors from S. Solving these equations for A and B we get that
A= PDP~' and B = PDy,P~!. Then AB = PD,P~'PDyP~' = PD,D,P!
and BA = PD,P~'PD,P~! = PDy,D,P~!. But D, D, are diagonal matrices
so D1 Dy = Dy Dy and therefore PD;DsP~' = PDyD{ P~ so AB = BA.
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