- 1. If A is an invertible matrix $n \times n$ matrix, which of the following must be true?
 - (a) $\det(A) = 1$.
 - (b) The columns of A are an orthogonal set in \mathbb{R}^n .
 - (c) 0 is not an eigenvalue of A.
 - (d) The reduced row echelon form of A is I_n .
 - (e) A is diagonalizable.
 - (f) The rows of A are a basis for \mathbb{R}_n .

2. Let
$$A = \begin{bmatrix} 2 & 3 & 0 & 0 & -6 \\ 0 & 0 & 0 & 1 & 5 \\ -1 & 0 & 6 & 3 & 3 \\ 0 & 1 & 4 & 2 & 0 \end{bmatrix}$$
.

- (a) Find the RREF of A.
- (b) What are the rank and nullity of A?
- (c) Find a basis for the null space of A.
- (d) Find a basis for the column space of A.
- (e) Find a basis for the row space of A.

(f) Let
$$\mathbf{b} = \begin{bmatrix} -1 \\ 6 \\ 11 \\ 7 \end{bmatrix}$$
. Prove that $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ is a solution to $A\mathbf{x} = \mathbf{b}$. Find all the solutions to $A\mathbf{x} = \mathbf{b}$.

3. Let A and B be $n \times n$ matrices such that $\det(A) = 4$, $\det(B) = -1$.

- (a) What is $det(A^2B^T)$?
- (b) What are the rank and nullity of $A^2 B^T$?
- (c) Let **c** be a fixed vector in \mathbb{R}^n . How many solutions does $A^2 B^T \mathbf{x} = \mathbf{c}$ have? What are the solutions?

4. For what values of *a* is
$$\begin{bmatrix} a^2 \\ -3a \\ -2 \end{bmatrix}$$
 in span $\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} \right\}$?

- 5. Determine if the following statements are true or false. Give a proof or counterexample.
 - (a) If U and W are subspaces of a vector space V and $\dim U < \dim W$, then U is a subspace of W.

(b) Any subspace of
$$\mathbb{R}^3$$
 which contains the vectors $\begin{bmatrix} 1\\2\\-1 \end{bmatrix}$ and $\begin{bmatrix} 2\\1\\-2 \end{bmatrix}$ must also contain the vector $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$.

6. Let S be the following set of vectors in \mathbb{R}^4 .

$$S = \left\{ \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\6 \end{bmatrix}, \begin{bmatrix} 3\\1\\0\\6 \end{bmatrix}, \begin{bmatrix} -7\\6\\0\\11 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix} \right\}$$

- (a) Find a subset of S which is a basis for span S.
- (b) Does S contain a basis for \mathbb{R}^4 ? Is S contained in a basis for \mathbb{R}^4 ?
- 7. Fix a real number λ and a nonzero vector \mathbf{v} in \mathbb{R}^n . Determine if the following sets are subspaces of M_{nn} .
 - (a) The set of all $n \times n$ matrices with eigenvalue λ .
 - (b) The set of all $n \times n$ matrices with eigenvector **v**.
- 8. Let $A = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$. Determine if $(\mathbf{u}, \mathbf{v}) = \mathbf{u}^T A \mathbf{v}$ is an inner product on \mathbb{R}^2 . Either show that it satisfies all four properties of an inner product or give an example of vectors that show it fails one of the properties.
- 9. Let $S = \{t^2, t, 1\}$ be the standard basis for P_2 . Define an inner product on P_2 by $(p(t), q(t)) = [p(t)]_S \cdot [q(t)]_S$. Let W be the subspace of all polynomials p(t) in P_2 such that p(2) = 0.
 - (a) Find an orthogonal basis for W.
 - (b) Find a basis for W^{\perp} .
- 10. Let A be a fixed $n \times n$ matrix. Define $L: M_{nn} \to M_{nn}$ to be L(X) = AX XA.
 - (a) Prove that L is a linear transformation.
 - (b) Is L one-to-one? Is L onto?

11. Let $L: P_3 \to \mathbb{R}^4$ be the linear transformation $L(p(t)) = \begin{bmatrix} p(0) \\ p'(0) \\ p''(0) \\ p'''(0) \end{bmatrix}$. Prove that

L is invertible and find L^{-1} .

- 12. Let $L : P_3 \to M_{22}$ be the linear transformation $L(at^3 + bt^2 + ct + d) = \begin{bmatrix} a c & 2c + d \\ b + d & 2a b \end{bmatrix}$.
 - (a) Find bases for the kernel and range of L.
 - (b) Find the representation of L with respect to the bases $S = \{t^3, t^2, t, 1\}$ and $T = \{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$
 - (c) Let $S' = \{t^3, t^3 t^2, t^3 + t^2 t, t^3 + t^2 + t 1\}$ and let

$$T' = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

Find the representation of L with respect to S' and T' two different ways: directly and using transition matrices.

- 13. Let $L: P_2 \to P_2$ be the linear transformation given by L(at+b) = (2a+b)t a.
 - (a) Find the representation A of L with respect to the basis $\{t+1, t-1\}$.
 - (b) Find the eigenvalues and eigenvectors of A.
 - (c) Use the results from the previous part to find the eigenvalues and eigenvectors of L.
- 14. For each matrix A, find its eigenvalues and a basis for the associated eigenspaces.

(a) $A =$	$\begin{bmatrix} 2 & -6 & 1 \end{bmatrix}$		4	2	0	0
	0 -1 0	(a) $A =$	3	3	0	0
	-2 4 -1	(c) $A =$	0	0	2	5
(b) $A =$	3 0 0]		0	0	0	2
	-2 3 -2					
	2 0 5					

- 15. For each of the matrices in the previous problem, determine if A is diagonalizable. If it is diagonalizable, find a diagonal matrix D and an invertible matrix P such that $D = P^{-1}AP$ and find A^{100} .
- 16. Let A be an $n \times n$ matrix. Do A and A^T have the same eigenvalues? Do A and A^T have the same eigenvectors?

17. Let A and B be $n \times n$ matrices. Suppose there exists a basis S for \mathbb{R}^n such that all vectors in S are eigenvectors of both A and B. Prove that AB = BA.