
Review 3 Solutions

1. Let V = P1 and define (p(t), q(t)) = p(0)q(0) + p(1)q(1)

(a) Prove that this is an inner product on V .

Check the four properties of inner products.

Property 1: (u,u) ≥ 0 and (u,u) = 0 if and only if u = 0.
(p(t), p(t)) = (p(0))2 + (p(1))2. This is a sum of squares so it is always
greater than or equal to 0. It equals 0 if and only if p(0) = 0 and p(1) = 0.
As p(t) is in P1, it has the form p(t) = at+ b. Thus p(0) = b, p(1) = a+ b
so p(0) = p(1) = 0 if and only if a = b = 0 in which case p(t) = 0.
Property 2: (u,v) = (v,u)
(p(t), q(t)) = p(0)q(0) + p(1)q(1) = q(0)p(0) + q(1)p(1) = (q(t), p(t)).
Property 3: (u + v,w) = (u,w) + (v,w)
(p(t)+q(t), r(t)) = (p+q)(0)r(0)+(p+q)(1)r(1) = (p(0)+q(0))r(0)+(p(1)+
q(1))r(1) = (p(0)r(0) + p(1)r(1)) + (q(0)r(0) + q(1)r(1)) = (p(t), r(t)) +
(q(t), r(t)).
Property 4: (cu,v) = c(u,v)
(cp(t), q(t)) = (cp)(0)q(0)+(cp)(1)q(1) = cp(0)q(0)+cp(1)q(1) = c(p(0)q(0)+
p(1)q(1)) = c(p(t), q(t)).

(b) Find the angle between t and 1.

If θ is the angle between t and 1 then cos(θ) = (t,1)
‖t‖‖1‖ . First compute

the lengths. The length of a vector v is ‖v‖ =
√

(v,v). Then (t, t) =

(0)(0) + (1)(1) = 1 so ‖t‖ =
√

1 = 1 and (1, 1) = (1)(1) + (1)(1) = 2 so
‖1‖ =

√
2. Finally, (t, 1) = (0)(1)+(1)(1) = 1 so cos(θ) = 1√

2
and θ = π/4.

(c) Let W be the 1-dimensional subspace of V with basis {t}. Find a basis
for W⊥ and dimW⊥.

Any polynomial which is orthogonal to t will be perpendicular to all the
multiples of t as well, so the elements of W⊥ are exactly the polynomials
in P1 which are orthogonal to t. If p(t) is in P1, then p(t) = at+ b for some
constants a, b. Then (t, p(t)) = (t, at + b) = (0)(b) + (1)(a + b) = a + b.
So for at + b to be orthogonal to t, it must have a + b = 0. Therefore
W⊥ = {at+ b|a+ b = 0} = {at− a} = span{t− 1}. The dimension of W⊥
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is 1 and it has basis {t− 1}.

Note that we could also compute dimW⊥ using the formula that dimW +
dimW⊥ = dimP1 and that dimW = 1 and dimP1 = 2.

(d) Find an orthonormal basis for V .

Start by finding an orthogonal basis for V . Any set of nonzero orthogonal
vectors is linearly independent and the dimension of V is 2, so any two
nonzero orthogonal vectors will be a basis for V . From the previous part,
the set {t, t − 1} is orthogonal so this is an orthogonal basis for V . To
get an orthonormal basis, divide each vector by its length. From part (a),
‖t‖ = 1. Also, (t− 1, t− 1) = (−1)(−1) + (0)(0) = 1 so ‖t− 1‖ =

√
1 = 1.

Both t and t− 1 are already length 1 so {t, t− 1} is an orthonormal basis.

2. Let A be an m × n matrix. If v,w are in Rn, define (v,w) = (Av) · (Aw).
Prove that this is an inner product on Rn if and only if the nullity of A is 0.

The nullity of A is the dimension of the null space of A, which is the set of
solutions to Ax = 0. The nullity of A is 0 if and only if Ax = 0 has only the
trivial solution. We will check the 4 properties of inner products. Properties
2-4 and the first part of property 1 are satisfied for any matrix A, however the
second part of property 1 holds if and only if the nullity of A is 0.

Property 1: (u,u) ≥ 0 and (u,u) = 0 if and only if u = 0.
(u,u) = (Au) · (Au). By properties of dot product, this is always greater than
or equal to 0 and equals 0 if and only if Au = 0. If A has nullity 0, then Au = 0
if and only if u = 0. In this case, (u,u) = 0 if and only if u = 0 so property 1
is satisfied. If A does not have nullity 0, then Ax = 0 has a nontrivial solution
so there exists u 6= 0 with Au = 0 and thus (u,u) = 0 for the nonzero vector
u and property 1 is not satisfied.
Property 2: (u,v) = (v,u)
(u,v) = (Au) · (Av) = (Av) · (Au) = (v,u)
Property 3: (u + v,w) = (u,w) + (v,w)
(u + v,w) = (A(u + v)) · (Aw) = (Au +Av) · (Aw) = ((Au) · (Aw)) + ((Av) ·
(Aw)) = (u,w) + (v,w).
Property 4: (cu,v) = c(u,v)
(cu,v) = (A(cu)) · (Av) = (c(Au)) · (Av) = c((Au) · (Av)) = c(u,v).

3. If u and v are vectors in an inner product space and (u + v,u− v) = 0, show
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that ‖u‖ = ‖v‖.

Using the properties of inner products, we can rewrite (u+v,u−v) as (u,u)−
(u,v)+(v,u)− (v,v) = (u,u)− (v,v). This is equal to 0 so (u,u)− (v,v) = 0
which means that (u,u) = (v,v). This are both nonnegative numbers so we
can take square roots to get

√
(u,u) =

√
(v,v). This equations is the same as

‖u‖ = ‖v‖.

4. Let V = R4 with the dot product. Let S be the basis S =




1
2
0
−1

 ,


0
3
1
0

 ,


2
5
1
0

 ,


1
1
4
0


.

(a) Use the Gram-Schmidt process to transform S into an orthonormal basis
for V .

Label the vectors in S as u1,u2,u3,u4. We start by building an orthogo-
nal basis which we will label v1,v2,v3,v4. The first vector is v1 = u1 =

1
2
0
−1

. The second is v2 = − (v1,u2)
(v1,v1)

v1 + u2 = −6
6


1
2
0
−1

 +


0
3
1
0

 =


−1
1
1
1

.

The third is v3 = − (v1,u3)
(v1,v1)

v1 − (v2,u3)
(v2,v2)

v2 + u3 = −12
6


1
2
0
−1

 − 4
4


−1
1
1
1

 +


2
5
1
0

 =


1
0
0
1

. The fourth is v4 = − (v1,u4)
(v1,v1)

v1 − (v2,u4)
(v2,v2)

v2 − (v3,u4)
(v3,v3)

v3 + u4 =

−3
6


1
2
0
−1

 − 4
4


−1
1
1
1

 − 1
2


1
0
0
1

 +


1
1
4
0

 =


1
−1
3
−1

. The resulting orthogo-

nal basis is




1
2
0
−1

 ,

−1
1
1
1

 ,


1
0
0
1

 ,


1
−1
3
−1


. To get an orthonormal ba-

sis, divide each vector by its length. The resulting orthonormal basis is
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1/
√

6

2/
√

6
0

−1/
√

6

 ,

−1/2
1/2
1/2
1/2

 ,


1/
√

2
0
0

1/
√

2

 ,


1/
√

12

−1/
√

12

3/
√

12

−1/
√

12


.

(b) Write the vector


7
−2
1
4

 as a linear combination of the vectors in the basis

from part (a).

If v =


7
−2
1
4

 = a1v1 + a2v2 + a3v3 + a4v4, then ai = vi · v. Thus

a1 =


1/
√

6

2/
√

6
0

−1/
√

6

·


7
−2
1
4

 = − 1√
6
, a2 =


−1/2
1/2
1/2
1/2

·


7
−2
1
4

 = −2, a3 =


1/
√

2
0
0

1/
√

2

·


7
−2
1
4

 = 11√
2
, a4 =


1/
√

12

−1/
√

12

3/
√

12

−1/
√

12

 ·


7
−2
1
4

 = 8√
12

. Therefore


7
−2
1
4

 = − 1√
6


1/
√

6

2/
√

6
0

−1/
√

6

− 2


−1/2
1/2
1/2
1/2

+
11√

2


1/
√

2
0
0

1/
√

2

+
8√
12


1/
√

12

−1/
√

12

3/
√

12

−1/
√

12

 .

5. Let V = R4 with the dot product. Let W be the subspace of V with basis


1
0
1
1

 ,


2
1
−1
2


.

(a) Find an orthogonal basis for W .

Let u1 =


1
0
1
1

 ,u2 =


2
1
−1
2

. Using the Gram-Schmidt process, take v1 =

4



u1 =


1
0
1
1

 and v2 = − (v1,u2)
(v1,v1)

v1 + u2 = −3
3


1
0
1
1

+


2
1
−1
2

 =


1
1
−2
1

. The set




1
0
1
1

 ,


1
1
−2
1


 is an orthogonal basis for W .

(b) Find a basis for W⊥.

Any vector in R4 which is orthogonal to both vectors in a basis for W
will be orthogonal to all of W . We can therefore find the vectors in W⊥

by finding the vectors which are orthogonal to both vectors in a basis for
W . This can be done using either of the previously found bases for W .

If we use the basis given in the problem, the vector


a
b
c
d

 will be in W⊥

if 0 =


a
b
c
d

 ·


1
0
1
1

 = a + c + d and 0 =


a
b
c
d

 ·


2
1
−1
2

 = 2a + b − c + 2d.

We are therefore looking for the solutions to the homogeneous system of
2 equations a + c + d = 0, 2a + b − c + 2d = 0. This has coefficient

matrix

[
1 0 1 1
2 1 −1 2

]
. The RREF of this matrix is

[
1 0 1 1
0 1 −3 0

]
. It

follows that c, d can be anything and b = 3c, a = −c− d. Therefore W⊥ =

−c− d

3c
c
d


 =

c

−1
3
1
0

+ d


−1
0
0
1


. This has basis



−1
3
1
0

 ,

−1
0
0
1


.

(c) Find an orthogonal basis for W⊥.

Use Gram-Schmidt to transform the basis from part (c). The steps are
the same as in part (a). Note that your answer will look different de-
pending on the order that you wrote your basis vectors in part (c). Let

u1 =


−1
3
1
0

 ,u2 =


−1
0
0
1

. Using the Gram-Schmidt process, take v1 =

5



u1 =


−1
3
1
0

 and v2 = − (v1,u2)
(v1,v1)

v1 + u2 = − 1
11


−1
3
1
0

 +


−1
0
0
1

. Note that

to avoid fractions, we can instead take a multiple of this vector, so instead

we take v2 = −


−1
3
1
0

 + 11


−1
0
0
1

 =


−10
−3
−1
11

. The set



−1
3
1
0

 ,

−10
−3
−1
11




is an orthogonal basis for W⊥.

Note: If your basis vectors were in the other order, the orthogonal basis

you would get is



−1
0
0
1

 ,

−1
6
2
−1


.

(d) Let S be the union of the bases found in parts (a) and (c). Show that S
is an orthogonal basis for R4.

S =




1
0
1
1

 ,


1
1
−2
1

 ,

−1
3
1
0

 ,

−10
−3
−1
11


. You can check that each pair of

vectors is orthogonal (there are 6 pairs to check). Note that the first two
vectors are orthogonal because they were part of an orthogonal basis for
W , the last two vectors are orthogonal because they are part of an or-
thogonal basis for W⊥. The other pairs are orthogonal because they will
consist of one vector from W and one from W⊥. S is an orthogonal set of
nonzero vectors so S is linearly independent. S is a linearly independent
set of size 4 in a 4-dimensional vectors space so it is a basis.

6. Let V be an inner product space with dimension 5 and let W be a 3-dimensional
subspace of V .

(a) What is dimW⊥?

dimW⊥ = dimV − dimW = 2.

(b) Suppose U is a subspace of V and (u,w) = 0 for all u in U and w in W .
How are U and W⊥ related?
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U is a subspace of W⊥.

(c) Prove that if U is a subspace of V with dimU = 3 then there exist vectors
u in U and w in W with (u,w) 6= 0.

If dimU = 3, then U cannot be a subspace of W⊥ as W⊥ has dimension
2. It therefore cannot be true that (u,w) = 0 for all u in U and w in W ,
so there must be some u in U and w in W with (u,w) 6= 0.

7. Which of the following maps are linear transformations? For the maps which
are linear transformations, find the dimension of the kernel and range.

(a) L : R3 → R2 defined by L

ab
c

 =

[
ab− c
c+ 5a

]
.

This is not a linear transformation. It does not satisfy either of the proper-

ties of linear transformations. For example, L

r
ab
c

 = L

rarb
rc

 =

[
r2ab− rc
rc+ 5ra

]
and rL

ab
c

 = r

[
ab− c
c+ 5a

]
=

[
rab− c
rc+ 5ra

]
. These are not

equal so the property L(rv) = rL(v) is not satisifed.

(b) L : M32 →M23 defined by L(A) = AT .

This is a linear transformation. If A,B are two 3 × 2 matrices and r is
a real number, by the properties of transpose from chapter 1 we get that
L(A + B) = (A + B)T = AT + BT = L(A) + L(B) and L(rA) = (rA)T =
rAT = rL(A).

The kernel of L is all 3 × 2 matrices whose transpose is the 2 × 3 zero
matrix. AT is the zero matrix if and only if A is the zero matrix so the
kernel of L is just the 3× 2 zero matrix. The dimension of the kernel of L
is 0.

The range of L is all of M23 since every 2 × 3 matrix is the transpose of
some 3× 2 matrix, so the dimension of the range of L is 6.

Note that L is both one-to-one and onto.
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(c) L : M22 → R defined by L(A) = det(A).

This is not a linear transformation. L(A + B) = det(A + B) and L(A) +
L(B) = det(A)+det(B) and det(A+B) 6= det(A)+det(B), so L does not
satisfy the first property of linear transformations. It also does not sat-
isfy the second property of linear transformations as L(rA) = det(rA) =
r2 det(A) 6= r det(A) = rL(A).

(d) L : P5 → R defined by L(p(t)) =
∫ 1

0
p(t) dt.

L is a linear transformation. If p(t) and q(t) are two polynomials in

P5 and r is a real number, then L(p(t) + q(t)) =
∫ 1

0
p(t) + q(t) dt =∫ 1

0
p(t) dt +

∫ 1

0
q(t) dt = L(p(t)) + L(q(t)) and L(rp(t)) =

∫ 1

0
rp(t) dt =

r
∫ 1

0
p(t) dt = rL(p(t)).

In this case it is easier to figure out the range than the kernel. The range
is a subspace of R. R is a 1-dimensional space so the only subspaces of R
are the zero vector space and R. The range is not the zero vector space
since it is possible to get a nonzero number as a result of L (for example
if p(t) is the constant function 1 then L(p(t)) = 1). The range is therefore
R so the dimension of the range is 1.

Using that dim kerL+dim range L = dimP5 we get that 1+dim range L =
6 so the dimension of the kernel is 5.

8. Let L : R4 → P2 be the linear transformation given by

L



a
b
c
d


 = (a− b)t2 + (c+ a)t+ (b+ c)

(a) Find a basis for the kernel of L.

The kernel of L is the subspace of R4 of vectors which whose image under

L is 0. If


a
b
c
d

 is in the kernel of L then a − b = 0, c + a = 0, b + c = 0.

The first two equations tell us that b = a and c = −a and thus the last
equation b + c = 0 is automatically satisfied. There is no restriction on
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the variable d so we get that kerL =



a
a
−a
d


 =

a


1
1
−1
0

+ d


0
0
0
1


 =

span




1
1
−1
0

 ,


0
0
0
1


. The two vectors are linearly independent so this is

a two dimensional vector space with basis




1
1
−1
0

 ,


0
0
0
1


.

(b) Find a basis for the range of L.

The range of L is all vectors in P2 of the form (a−b)t2 +(c+a)t+(b+c) =
a(t2+t)+b(−t2+1)+c(t+1) so the range of L is span{t2+t,−t2+1, t+1}.
These three vectors are not linearly independent as the third one is the sum
of the first two so we can delete the third vector without changing the span.
Therefore range L = span{t2+t,−t2+1, t+1} = span{t2+t,−t2+1}. These
two vectors are linearly independent so range of L has basis {t2+t,−t2+1}.

Note that we found that both kernel and range of L were dimension 2. A
good way to double check these dimensions is to check that they satisfy
the equation dim kerL+ dim range L = dim R4.

(c) Is L one-to-one? Onto? Invertible?

The dimension of the kernel is 2 so it is not one-to-one. The range has
dimension 2 and P2 has dimension 3 so the range is not all of P2 and L is
not onto. For L to be invertible, it must be both one-to-one and onto but
it is neither so it is not invertible.

9. Let V and W be finite dimensional real vector spaces and let L : V → W be a
linear transformation. Circle the correct answer to the following two multiple
choice questions.

(a) If L is one-to-one, what can we say about dim(V ) and dim(W )?

dim(V ) ≤ dim(W )
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L is one-to-one so dim kerL = 0 so the equation dim kerL+dim range L =
dimV becomes dim range L = dimV . But the range of L is a subspace
of W so it has dimension less than or equal to the dimension of W , so
dimV = dim range L ≤ dimW .

(b) If L is onto, what can we say about dim(V ) and dim(W )?

dim(V ) ≥ dim(W )

L is onto so dim range L = dimW so the equation dim kerL+dim range L =
dimV becomes dim kerL+dimW = dimV and as dim kerL ≥ 0 this shows
dimV ≥ dimW .

10. Let L : P2 → P2 be the map given by L(p(t)) = tp′(t) + p(0)

(a) Show L is a linear transformation.

We need to check the two properties of linear transformations. If p(t), q(t)
are vectors in P2 then L(p(t) + q(t)) = t(p′(t) + q′(t)) + p(0) + q(0) =
(tp′(t) + p(0)) + (tq′(t) + q(0)) = L(p(t)) + L(q(t)) so the first condition
is satisfied. If p(t) is a vector in P2 and r is a real number L(rp(t)) =
trp′(t) + rp(0) = r(tp′(t) + p(0)) = rL(p(t)) so the second condition is also
satisfied.

(b) Find the matrix representing L with respect to the basis {t2, t, 1}.

First find L evaluated at each basis element. L(t2) = 2t2, L(t) = t, L(1) =
1. The coordinate vectors of 2t2, t, 1 with respect to the given basis are 2

0
0

 ,
 0

1
0

 ,
 0

0
1

 respectively. These are the columns of the matrix

representing L with respect to the given basis so the matrix is

 2 0 0
0 1 0
0 0 1

.

(c) Is L invertible? If yes, what is L−1(4t2 − t+ 3)?

L is invertible because the matrix representing L is invertible. The matrix
representing L−1 with respect to the basis {t2, t, 1} will be the inverse of

the matrix in part b which is

 1/2 0 0
0 1 0
0 0 1

. The vector 4t2 − t + 3 has
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coordinate vector

 4
−1
3

 so L−1(4t2 − t+ 3) will have coordinate vector 1/2 0 0
0 1 0
0 0 1

 4
−1
3

 =

 2
−1
3

 so L−1(4t2 − t+ 3) = 2t2 − t+ 3.

Note: This problem can also be done by first rewriting L(p(t)) = tp′(t) +
p(0) as L(at2 + bt+ c) = 2at2 + bt+ c.

11. Let L : R2 → R3 be the linear transformation defined by L

([
x
y

])
= x− y

2y
y − 3x

. Let S be the standard basis for R2 and S ′ =

{[
1
2

]
,

[
0
−1

]}
.

Let T be the standard basis for R3 and T ′ =


 1

1
0

 ,
 1

2
1

 ,
 0

0
2

.

(a) Using the techniques of section 6.3, find the representation of L with re-
spect to:

i. S and T

We first plug the vectors of S into L. L

([
1
0

])
=

 1
0
−3

 and

L

([
0
1

])
=

 −1
2
1

. As T is the standard basis, taking the coor-

dinate vectors with respect to T will not change these vectors so the

representation is

 1 −1
0 2
−3 1

.

ii. S ′ and T

We start by plugging the vectors in S ′ into L. L

([
1
2

])
=

 −1
4
−1


and L

([
0
−1

])
=

 1
−2
−1

. As T is the standard basis, taking the

coordinate vector with respect to T does not change the vector so the
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matrix we get is

 −1 1
4 −2
−1 −1

.

iii. S and T ′

As in the first part, if we plug the vectors of S into L we get left

L

([
1
0

])
=

 1
0
−3

 and L

([
0
1

])
=

 −1
2
1

. We now need to

find the coordinate vectors of each of these with respect to T ′. To

find the coordinate vector of

 1
0
−3

 we need to find x, y, z such that 1
0
−3

 = x

 1
1
0

+y

 1
2
1

+z

 0
0
2

. In other words, we are trying

to solve the system of linear equations x+ y = 1, x+ 2y = 0, y+ 2z =
−3. The solution is x = 2, y = −1, z = −1 so the coordinate vector

with respect to T ′ is

 2
−1
−1

. Similarly, to find the coordinate vector

of

 −1
2
1

 we’re solving the linear system x + y = −1, x + 2y =

2, y+ 2z = 1. The solution is x = −4, y = 3, z = −1 so the coordinate

vector is

 −4
3
−1

. Putting together these two columns we get that the

representation with respect to S and T ′ is

 2 −4
−1 3
−1 −1

.

iv. S ′ and T ′

As in the second part, if we plug the vectors of S ′ into L we get left

L

([
1
2

])
=

 −1
4
−1

 and L

([
0
−1

])
=

 1
−2
−1

. We now need

to find the coordinate vectors of each of these with respect to T ′. To

find the coordinate vector of

 −1
4
−1

 we need to solve the system of

linear equations x + y = −1, x + 2y = 4, y + 2z = −1. The solution
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is x = −6, y = 5, z = −3 so the coordinate vector with respect to T ′

is

 6
5
−3

. Similarly, to find the coordinate vector of

 1
−2
−1

 we’re

solving the linear equation x+ y = 1, x+ 2y = −2, y + 2z = −1. The

solution is x = 4, y = −3, z = 1 so the coordinate vector is

 4
−3
1

.

Putting together these two columns we get that the representation

with respect to S ′ and T ′ is

 −6 4
5 −3
−3 1

.

(b) Find the transition matrix

i. P from S ′ to S

To find the columns of P , we need to find the S coordinate vectors of
each of the vectors in S ′. As S is the standard basis, the coordinate
vectors are the same as the original vectors so P is just the matrix

with columns equal to the vectors in S ′. So P =

[
1 0
2 −1

]
.

ii. P−1 from S to S ′

We can either compute this by inverting P from the previous part
or we can directly compute the transition matrix from S to S ′. To
compute this directly, we need to take each of the vectors in S and
find their coordinate vectors with respect to S ′. To find the coor-

dinate vector of

[
1
0

]
with respect to S ′ we need to find x, y such

that

[
1
0

]
= x

[
1
2

]
+ y

[
0
−1

]
. So we are solving the linear system

x = 1, 2x− y = 0 which has solution x = 1, y = 2. To find the coordi-

nate vector of

[
0
1

]
we need to solve the linear system x = 0, 2x−y = 1

which has solution x = 0, y = −1. Putting the coordinate vectors in

as the columns of P−1 we get that P−1 =

[
1 0
2 −1

]
. As a check, you

can verify that PP−1 = I2. Coincidentally in this case it turns out
that P = P−1.

iii. Q from T ′ to T

To find Q we need to take the vectors in T ′ and find their coordinate
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vectors with respect to T . T is the standard basis so the coordinate
vectors are the same as the original vectors and Q is the matrix whose

columns are the vectors of T ′, Q =

 1 1 0
1 2 0
0 1 2

.

iv. Q−1 from T to T ′

We can either invert the matrix Q from the previous part or compute
this directly by finding the T ′ coordinate vector of each of the vectors

in T . To find the coordinate vector of

 1
0
0

 with respect to T ′ we

need to solve the system x + y = 1, x + 2y = 0, y + 2z = 0. The so-

lution is x = 2, y = −1, z = 1/2 so the coordinate vector is

 2
−1
1/2

.

To find the coordinate vector of

 0
1
0

 with respect to T ′ we need to

solve the system x + y = 0, x + 2y = 1, y + 2z = 0. The solution

is x = −1, y = 1, z = −1/2 so the coordinate vector is

 −1
1
−1/2

.

To find the coordinate vector of

 0
0
1

 with respect to T ′ we need to

solve the system x + y = 0, x + 2y = 0, y + 2z = 1. The solution is

x = 0, y = 0, z = 1/2 so the coordinate vector is

 0
0

1/2

. Putting

these together we get that Q−1 =

 2 −1 0
−1 1 0
1/2 −1/2 1/2

. We can check

that QQ−1 = I3.

(c) As in section 6.5, use the representation of L with respect to S and T and
the appropriate transition matrices to find the representation of L with
respect to S ′ and T ′. Check that this matches your previous answer.

Let A be the representation of L with respect to S and T and B the
representation with respect to S ′ and T ′. Then B = Q−1AP so we
can find B using A and the transition matrices Q−1 and P . So B =
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 2 −1 0
−1 1 0
1/2 −1/2 1/2

 1 −1
0 2
−3 1

[ 1 0
2 −1

]
=

 −6 4
5 −3
−3 1

. This matches

with what we got when we computed B directly.

In fact we can also check the other two parts this way. The representation
of L with respect to S ′ and T is AP and the representation of L with
respect to S and T ′ is Q−1A.

12. Determine if the statement is true or false. Prove or provide a counterexample.

(a) If L : R6 →M23 is a linear transformation which is onto, then L is invert-
ible.

TRUE. L is a linear transformation between two spaces of dimension 6
hence the fact that L is onto implies it is also one-to-one. This comes from
the formula dim kerL + dim range L = dim R6. If L is onto, the range is
all of M23 so dim range L = 6 and as dim R6 = 6 we get that dim kerL = 0
so the kernel is just the zero vector space and L is one-to-one. L is both
one-to-one and onto so it is invertible.

(b) Let L : V → W be a linear transformation. If dimW < dimV , then L is
onto.

FALSE. For example take V = R2,W = R and take L to just be the zero
map (L(v) = 0 for all v in R2). Then dimW < dimV and L is a linear
transformation but it is not onto.

(c) If A and B are similar matrices, then det(A) = det(B).

TRUE. A and B must be n×n matrices such that B = P−1AP for some in-
vertible matrix P . Thus det(B) = det(P−1AP ) = det(P−1) det(A) det(P ) =
(1/ det(P )) det(A) det(P ) = det(A).
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