Review for Exam 3

1. Let $V=P_{1}$ and define $(p(t), q(t))=p(0) q(0)+p(1) q(1)$
(a) Prove that this is an inner product on V.
(b) Find the angle between t and 1 .
(c) Let W be the 1-dimensional subspace of V with basis $\{t\}$. Find a basis for W^{\perp} and $\operatorname{dim} W^{\perp}$.
(d) Find an orthonormal basis for V.
2. Let A be an $m \times n$ matrix. If \mathbf{v}, \mathbf{w} are in \mathbb{R}^{n}, define $(\mathbf{v}, \mathbf{w})=(A \mathbf{v}) \cdot(A \mathbf{w})$. Prove that this is an inner product on \mathbb{R}^{n} if and only if the nullity of A is 0 .
3. If \mathbf{u} and \mathbf{v} are vectors in an inner product space and $(\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v})=0$, show that $\|\mathbf{u}\|=\|\mathbf{v}\|$.
4. Let $V=\mathbb{R}^{4}$ with the dot product. Let S be the basis $S=\left\{\left[\begin{array}{c}1 \\ 2 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 4 \\ 0\end{array}\right]\right\}$.
(a) Use the Gram-Schmidt process to transform S into an orthonormal basis for V.
(b) Write the vector $\left[\begin{array}{c}7 \\ -2 \\ 1 \\ 4\end{array}\right]$ as a linear combination of the vectors in the basis from part (a).
5. Let $V=\mathbb{R}^{4}$ with the dot product. Let W be the subspace of V with basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -1 \\ 2\end{array}\right]\right\}$.
(a) Find an orthogonal basis for W.
(b) Find a basis for W^{\perp}.
(c) Find an orthogonal basis for W^{\perp}.
(d) Let S be the union of the bases found in parts (a) and (c). Show that S is an orthogonal basis for \mathbb{R}^{4}.
6. Let V be an inner product space with dimension 5 and let W be a 3 -dimensional subspace of V.
(a) What is $\operatorname{dim} W^{\perp}$?
(b) Suppose U is a subspace of V and $(\mathbf{u}, \mathbf{w})=0$ for all \mathbf{u} in U and \mathbf{w} in W. How are U and W^{\perp} related?
(c) Prove that if U is a subspace of V with $\operatorname{dim} U=3$ then there exist vectors \mathbf{u} in U and \mathbf{w} in W with $(\mathbf{u}, \mathbf{w}) \neq 0$.
7. Which of the following maps are linear transformations? For the maps which are linear transformations, find the dimension of the kernel and range.
(a) $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $L\left(\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\right)=\left[\begin{array}{l}a b-c \\ c+5 a\end{array}\right]$.
(b) $L: M_{32} \rightarrow M_{23}$ defined by $L(A)=A^{T}$.
(c) $L: M_{22} \rightarrow \mathbb{R}$ defined by $L(A)=\operatorname{det}(A)$.
(d) $L: P_{5} \rightarrow \mathbb{R}$ defined by $L(p(t))=\int_{0}^{1} p(t) d t$.
8. Let $L: \mathbb{R}^{4} \rightarrow P_{2}$ be the linear transformation given by
$L\left(\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]\right)=(a-b) t^{2}+(c+a) t+(b+c)$
(a) Find a basis for the kernel of L.
(b) Find a basis for the range of L.
(c) Is L one-to-one? Onto? Invertible?
9. Let V and W be finite dimensional real vector spaces and let $L: V \rightarrow W$ be a linear transformation. Circle the correct answer to the following two multiple choice questions.
(a) If L is one-to-one, what can we say about $\operatorname{dim}(V)$ and $\operatorname{dim}(W)$?
i. $\operatorname{dim}(V) \leq \operatorname{dim}(W)$
ii. $\operatorname{dim}(V) \geq \operatorname{dim}(W)$
iii. $\operatorname{dim}(V)=\operatorname{dim}(W)$
iv. none of the above
(b) If L is onto, what can we say about $\operatorname{dim}(V)$ and $\operatorname{dim}(W)$?
i. $\operatorname{dim}(V) \leq \operatorname{dim}(W)$
ii. $\operatorname{dim}(V) \geq \operatorname{dim}(W)$
iii. $\operatorname{dim}(V)=\operatorname{dim}(W)$
iv. none of the above
10. Let $L: P_{2} \rightarrow P_{2}$ be the map given by $L(p(t))=t p^{\prime}(t)+p(0)$
(a) Show L is a linear transformation.
(b) Find the matrix representing L with respect to the basis $\left\{t^{2}, t, 1\right\}$.
(c) Is L invertible? If yes, what is $L^{-1}\left(4 t^{2}-t+3\right)$?
11. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $L\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=$ $\left[\begin{array}{c}x-y \\ 2 y \\ y-3 x\end{array}\right]$. Let S be the standard basis for \mathbb{R}^{2} and $S^{\prime}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ -1\end{array}\right]\right\}$.
Let T be the standard basis for \mathbb{R}^{3} and $T^{\prime}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]\right\}$.
(a) Using the techniques of section 6.3, find the representation of L with respect to:
i. S and T
ii. S^{\prime} and T
iii. S and T^{\prime}
iv. S^{\prime} and T^{\prime}
(b) Find the transition matrix
i. P from S^{\prime} to S
ii. P^{-1} from S to S^{\prime}
iii. Q from T^{\prime} to T
iv. Q^{-1} from T to T^{\prime}
(c) As in section 6.5, use the representation of L with respect to S and T and the appropriate transition matrices to find the representation of L with respect to S^{\prime} and T^{\prime}. Check that this matches your previous answer.
12. Determine if the statement is true or false. Prove or provide a counterexample.
(a) If $L: \mathbb{R}^{6} \rightarrow M_{23}$ is a linear transformation which is onto, then L is invertible.
(b) Let $L: V \rightarrow W$ be a linear transformation. If $\operatorname{dim} W<\operatorname{dim} V$, then L is onto.
(c) If A and B are similar matrices, then $\operatorname{det}(A)=\operatorname{det}(B)$.
